Deletion of the HAMP domains from the histidine kinase CaNik1p of Candida albicans or treatment with fungicides activates the MAP kinase Hog1p in S. cerevisiae transformants (original) (raw)

Group III Histidine Kinase Is a Positive Regulator of Hog1-Type Mitogen-Activated Protein Kinase in Filamentous Fungi

Eukaryotic Cell, 2005

We previously reported that the group III histidine kinase Dic1p in the maize pathogen Cochliobolus heterostrophus is involved in resistance to dicarboximide and phenylpyrrole fungicides and in osmotic adaptation. In addition, exposure to the phenylpyrrole fungicide fludioxonil led to improper activation of Hog1-type mitogen-activated protein kinases (MAPKs) in some phytopathogenic fungi, including C. heterostrophus . Here we report, for the first time, the relationship between the group III histidine kinase and Hog1-related MAPK: group III histidine kinase is a positive regulator of Hog1-related MAPK in filamentous fungi. The phosphorylation pattern of C. heterostrophus BmHog1p (Hog1-type MAPK) was analyzed in wild-type and dic1- deficient strains by Western blotting. In the wild-type strain, phosphorylated BmHog1p was detected after exposure to both iprodione and fludioxonil at a concentration of 1 μg/ml. In the dic1- deficient strains, phosphorylated BmHog1p was not detected afte...

Functional Studies on the Histidine Kinase CaNik1p from Candida albicans

2013

I am very grateful to the Egyptian government and the DAAD for the financial support of my studies. In addition, I thank the graduate school of HZI, Braunschweig for financing attendance at conferences and for organizing workshops, scientific courses, and retreats, which altogether improved not only my scientific experience, but also my research skills. To my parents, I say "You might think you were in Egypt far away from me, but I would say you were always in my mind. With your continuous support and prayers for me, I was always on the right track." Zu Deutschland wollte ich "Herzlichen Dank für die Gastfreundschaft" sagen.

Fungal fludioxonil sensitivity is diminished by a constitutively active form of the group III histidine kinase

FEBS Letters, 2012

The fungicide fludioxonil is used to control plant-pathogenic fungi by causing improper activation of the Hog1-type MAPK. However, the appearance of fludioxonil resistant mutants, mostly caused by mutations in the group III histidine kinases, poses a serious problem. Moreover, such mutations cause also hyperosmotic sensitivity and the underlying mechanism has been elusive for a long time. Using Saccharomyces cerevisiae as an experimental host, we show that those phenotypes are conferred by a constitutively active form of the group III histidine kinase. Our results explain the different reasons for fludioxonil resistance conferred by its deletion and missense mutation.

Differential Involvement of Histidine Kinase Receptors in Pseudohyphal Development, Stress Adaptation, and Drug Sensitivity of the Opportunistic Yeast Candida lusitaniae

Eukaryotic Cell, 2007

Fungal histidine kinase receptors (HKRs) sense and transduce many extracellular signals. We investigated the role of HKRs in morphogenetic transition, osmotolerance, oxidative stress response, and mating ability in the opportunistic yeast Candida lusitaniae . We isolated three genes, SLN1 , NIK1 , and CHK1 , potentially encoding HKRs of classes VI, III, and X, respectively. These genes were disrupted by a transformation system based upon the “ URA3 blaster” strategy. Functional analysis of disruptants was undertaken, except for the sln1 nik1 double mutant and the sln1 nik1 chk1 triple mutant, which are not viable in C. lusitaniae . The sln1 mutant revealed a high sensitivity to oxidative stress, whereas both the nik1 and chk1 mutants exhibited a more moderate sensitivity to peroxide. We also showed that the NIK1 gene was implicated in phenylpyrrole and dicarboximide compound susceptibility while HKRs seem not to be involved in resistance toward antifungals of clinical relevance. Con...

Histidine Phosphotransfer Proteins in Fungal Two-Component Signal Transduction Pathways

Eukaryotic Cell, 2013

The histidine phosphotransfer (HPt) protein Ypd1 is an important participant in the Saccharomyces cerevisiae multistep twocomponent signal transduction pathway and, unlike the expanded histidine kinase gene family, is encoded by a single gene in nearly all model and pathogenic fungi. Ypd1 is essential for viability in both S. cerevisiae and in Cryptococcus neoformans. These and other aspects of Ypd1 biology, combined with the availability of structural and mutational data in S. cerevisiae, suggest that the essential interactions between Ypd1 and response regulator domains would be a good target for antifungal drug development. The goal of this minireview is to summarize the wealth of data on S. cerevisiae Ypd1 and to consider the potential benefits of conducting related studies in pathogenic fungi.

Histidine kinase, two‐component signal transduction proteins of Candida albicans and the pathogenesis of candidosis

Mycoses, 1999

SummaryCandida albicans is an important pathogen of the immunocompromised patient. Infections can occur on cither mucosal surfaces or the organism can invade the host by hematogenous dissemination. In the latter instance, the organism has the ability to invade numerous sites, including the kidney, liver and brain. Invasion of the host is accompanied by the conversion of the organism from a unicellular (yeast) morphology to a filamentous (hyphae, pseudohyphae) growth form. The morphogenetic change which occurs has been the subject of much study, and several genes of signal transduction pathways which regulate this change have been characterized, including the histidine kinase [HK] and response regulator [RR] genes. The HKs of C. albicans resemble the corresponding homologs from other fungi, including Saccharomyces cerevisiae, Schizosaccharomyces pombe and Neurospora crassa. We have characterized and functionally determined the roles of both a histidine kinase protein (Chk1p) and a re...

Role of the Mitogen-Activated Protein Kinase Hog1p in Morphogenesis and Virulence of Candida albicans

Journal of Bacteriology, 1999

The relevance of the mitogen-activated protein (MAP) kinase Hog1p in Candida albicans was addressed through the characterization of C. albicans strains without a functional HOG1 gene. Analysis of the phenotype of hog1 mutants under osmostressing conditions revealed that this mutant displays a set of morphological alterations as the result of a failure to complete the final stages of cytokinesis, with parallel defects in the budding pattern. Even under permissive conditions, hog1 mutants displayed a different susceptibility to some compounds such as nikkomycin Z or Congo red, which interfere with cell wall functionality. In addition, the hog1 mutant displayed a colony morphology different from that of the wild-type strain on some media which promote morphological transitions in C. albicans. We show that C. albicans hog1 mutants are derepressed in the serum-induced hyphal formation and, consistently with this behavior, that HOG1 overexpression in Saccharomyces cerevisiae represses the pseudodimorphic transition. Most interestingly, deletion of HOG1 resulted in a drastic increase in the mean survival time of systemically infected mice, supporting a role for this MAP kinase pathway in virulence of pathogenic fungi. This finding has potential implications in antifungal therapy.

Role of the Mitogen-Activated Protein Kinase Hog1p in Morphogenesis and Virulence of Candida albicans

1999

The relevance of the mitogen-activated protein (MAP) kinase Hog1p in Candida albicans was addressed through the characterization of C. albicans strains without a functional HOG1 gene. Analysis of the phenotype of hog1 mutants under osmostressing conditions revealed that this mutant displays a set of morphological alterations as the result of a failure to complete the final stages of cytokinesis, with parallel defects in the budding pattern. Even under permissive conditions, hog1 mutants displayed a different susceptibility to some compounds such as nikkomycin Z or Congo red, which interfere with cell wall functionality. In addition, the hog1 mutant displayed a colony morphology different from that of the wild-type strain on some media which promote morphological transitions in C. albicans. We show that C. albicans hog1 mutants are derepressed in the serum-induced hyphal formation and, consistently with this behavior, that HOG1 overexpression in Saccharomyces cerevisiae represses the pseudodimorphic transition. Most interestingly, deletion of HOG1 resulted in a drastic increase in the mean survival time of systemically infected mice, supporting a role for this MAP kinase pathway in virulence of pathogenic fungi. This finding has potential implications in antifungal therapy.

NikA/TcsC Histidine Kinase Is Involved in Conidiation, Hyphal Morphology, and Responses to Osmotic Stress and Antifungal Chemicals in Aspergillus fumigatus

PLoS ONE, 2013

The fungal high osmolarity glycerol (HOG) pathway is composed of a two-component system (TCS) and Hog1-type mitogen-activated protein kinase (MAPK) cascade. A group III (Nik1-type) histidine kinase plays a major role in the HOG pathway of several filamentous fungi. In this study, we characterized a group III histidine kinase, NikA/TcsC, in the lifethreatening pathogenic fungus, Aspergillus fumigatus. A deletion mutant of nikA showed low conidia production, abnormal hyphae, marked sensitivity to high osmolarity stresses, and resistance to cell wall perturbing reagents such as congo red and calcofluor white, as well as to fungicides such as fludioxonil, iprodione, and pyrrolnitrin. None of these phenotypes were observed in mutants of the SskA response regulator and SakA MAPK, which were thought to be downstream components of NikA. In contrast, in response to fludioxonil treatment, NikA was implicated in the phosphorylation of SakA MAPK and the transcriptional upregulation of catA, dprA, and dprB, which are regulated under the control of SakA. We then tested the idea that not only NikA, but also the other 13 histidine kinases play certain roles in the regulation of the HOG pathway. Interestingly, the expression of fos1, phkA, phkB, fhk5, and fhk6 increased by osmotic shock or fludioxonil treatment in a SakA-dependent manner. However, deletion mutants of the histidine kinases showed no significant defects in growth under the tested conditions. Collectively, although the signal transduction network related to NikA seems complicated, NikA plays a crucial role in several aspects of A. fumigatus physiology and, to a certain extent, modulates the HOG pathway.