Functional Studies on the Histidine Kinase CaNik1p from Candida albicans (original) (raw)
Related papers
Mycoses, 1999
SummaryCandida albicans is an important pathogen of the immunocompromised patient. Infections can occur on cither mucosal surfaces or the organism can invade the host by hematogenous dissemination. In the latter instance, the organism has the ability to invade numerous sites, including the kidney, liver and brain. Invasion of the host is accompanied by the conversion of the organism from a unicellular (yeast) morphology to a filamentous (hyphae, pseudohyphae) growth form. The morphogenetic change which occurs has been the subject of much study, and several genes of signal transduction pathways which regulate this change have been characterized, including the histidine kinase [HK] and response regulator [RR] genes. The HKs of C. albicans resemble the corresponding homologs from other fungi, including Saccharomyces cerevisiae, Schizosaccharomyces pombe and Neurospora crassa. We have characterized and functionally determined the roles of both a histidine kinase protein (Chk1p) and a re...
The Candida albicans histidine kinase Chk1p: Signaling and cell wall mannan
Fungal Genetics and Biology, 2009
Several published functions associated with the CHK1 histidine kinase of Candida albicans resemble those of the MAPK Cek1p and its cognate receptor Sho1p (SSU81). To explore this further, we have compared mutants lacking the proteins mentioned above and have constructed a double sho1/ chk1Δ null mutant to determine relationships among these proteins. We observed that the sensitivity to Congo red (CR), calcofluor white (CW), as well as clumping of cells, was slightly increased in the double mutant compared to the single chk1Δ or sho1Δ mutants. However, Cek1p phosphorylation via Sho1p, which occurs during log phase growth in the presence or absence of CR in Wt cells, does not require Chk1p. These data suggest that Chk1p and Sho1p are components of parallel but independent signal pathways. In addition, bulk mannan of strains was analyzed by GPC/MS and NMR. Compared to Wt and a CHK1 gene-reconstituted strain (CHK23) that contained, high, intermediate and low Mw mannan species, we found that the mannan of strains CHK21 (chk1Δ null), the cek1Δ null, and the double mutant consisted only of low Mw mannan. The sho1Δ null mutant only demonstrated a reduced intermediate type of mannan. Alcian blue binding was lower in cek1Δ, chk1Δ, and the double sho1/chk1Δ null mutant lacking high and intermediate Mw mannan than in the sho1Δ null which had a partial loss of intermediate Mw mannan only. We conclude that the Chk1p HK is part of a functionally similar but parallel pathway to the Sho1p-Cek1p pathway that confers resistance to the cell wall inhibitors CR and CW. However, a functional relationship in mannan biosynthesis of Chk1p and Cek1p exists that only partially requires Sho1p.
Background: Microorganisms use two-component signal transduction (TCST) systems to regulate the response of the organism to changes of environmental conditions. Such systems are absent from mammalian cells and are thus of interest as drug targets. Fungal TCST systems are usually composed of a hybrid histidine kinase, comprising the histidine kinase (HisKA) domain and a receiver domain, a histidine phosphotransfer protein and a response regulator. Among the 11 groups of fungal histidine kinases, group III histidine kinases are of particular relevance as they are essential for the activity of different groups of fungicides. A characteristic feature is the N-terminal amino acid repeat domain comprising multiple HAMP domains, of which the function is still largely unknown. In Candida albicans, a fungal human pathogen, three histidine kinases were identified, of which CaNik1p is a group III histidine kinase. Heterologous expression of this protein in Sacchromyces cerevisiae conferred susceptibility to different fungicides. Fungicide activity was associated with phosphorylation of the mitogen activated protein kinase Hog1p. Results: We have constructed mutated versions of CaNik1p, from which either all HAMP domains were deleted (CaNik1pΔHAMP) or in which the histidine kinase or the receiver domains were not-functional. Expression of CaNIK1ΔHAMP in S. cerevisiae led to severe growth inhibition. Normal growth could be restored by either replacing the phosphate-accepting histidine residue in CaNik1pΔHAMP or by expressing CaNIK1ΔHAMP in S. cerevisiae mutants, in which single genes encoding several components of the HOG pathway were deleted. Expression of proteins with non-functional histidine kinase or receiver domains resulted in complete loss of susceptibility to antifungals, such as fludioxonil. Conditions leading to growth inhibition of transformants also led to phosphorylation of the MAP kinase Hog1p.
Fems Yeast Research, 2003
The human pathogen Candida albicans encodes at least three putative two-component histidine kinase signal transduction proteins, including Chk1p and a response regulator protein (Cssk1p). Strains deleted in CHK1 are avirulent in a murine model of hematogenously disseminated disease. The specific function of Chk1p has not been established, but hyphae of the chk1 mutant exhibit extensive flocculation while yeast forms are less adherent to reconstituted human esophageal tissue, indicating that this protein may regulate cell surface properties. Herein, we analyze glucan, mannan and chitin profiles in strains deleted in chk1 (CHK21) compared to a genereconstituted strain (CHK23) and a parental strain CAF2. Total alkali-soluble hexose from the cell wall of the chk1 mutant (strain CHK21) was significantly reduced. Western blots of cell wall extracts from CHK21, CHK23 and CAF2 reacted with a Mab to the acidstable mannan fraction revealed extensive staining of lower molecular mass species in strain CHK21 only. FACE (fluorophore assisted carbohydrate electrophoresis) was used to characterize the oligosaccharide side chains of L-eliminated (O-linked), acid-hydrolyzed (acidlabile phosphomannan) and acetolysis (acid-stable mannan) extracted fractions of total mannan. The profiles of O-linked as well as the acid-labile oligosaccharides were similar in both CAF2 and CHK21, but the acid-stable oligosaccharide side chains were significantly truncated. We also characterized the L-glucan from each strain using NMR, and found that both the degree of polymerization and the ratio of (1-3)/(1-6) linkages was lower in CHK21 relative to wild-type cells. The sensitivity of CHK21 to antifungal drugs and inhibitors was unaffected. In summary, our data have identified a new function for a histidine kinase two-component signal protein in a human pathogenic fungus. ß 2002 Published by Elsevier Science B.V. on behalf of the Federation of European Microbiological Societies. 1567-1356 / 02 / $22.00 ß 2002 Published by Elsevier Science B.V. on behalf of the Federation of European Microbiological Societies. PII: S 1 5 6 7 -1 3 5 6 ( 0 2 ) 0 0 1 6 4 -2
Fems Yeast Research, 2003
The human pathogen Candida albicans encodes at least three putative two-component histidine kinase signal transduction proteins, including Chk1p and a response regulator protein (Cssk1p). Strains deleted in CHK1 are avirulent in a murine model of hematogenously disseminated disease. The specific function of Chk1p has not been established, but hyphae of the chk1 mutant exhibit extensive flocculation while yeast forms are less adherent to reconstituted human esophageal tissue, indicating that this protein may regulate cell surface properties. Herein, we analyze glucan, mannan and chitin profiles in strains deleted in chk1 (CHK21) compared to a genereconstituted strain (CHK23) and a parental strain CAF2. Total alkali-soluble hexose from the cell wall of the chk1 mutant (strain CHK21) was significantly reduced. Western blots of cell wall extracts from CHK21, CHK23 and CAF2 reacted with a Mab to the acidstable mannan fraction revealed extensive staining of lower molecular mass species in strain CHK21 only. FACE (fluorophore assisted carbohydrate electrophoresis) was used to characterize the oligosaccharide side chains of L-eliminated (O-linked), acid-hydrolyzed (acidlabile phosphomannan) and acetolysis (acid-stable mannan) extracted fractions of total mannan. The profiles of O-linked as well as the acid-labile oligosaccharides were similar in both CAF2 and CHK21, but the acid-stable oligosaccharide side chains were significantly truncated. We also characterized the L-glucan from each strain using NMR, and found that both the degree of polymerization and the ratio of (1-3)/(1-6) linkages was lower in CHK21 relative to wild-type cells. The sensitivity of CHK21 to antifungal drugs and inhibitors was unaffected. In summary, our data have identified a new function for a histidine kinase two-component signal protein in a human pathogenic fungus. ß 2002 Published by Elsevier Science B.V. on behalf of the Federation of European Microbiological Societies. 1567-1356 / 02 / $22.00 ß 2002 Published by Elsevier Science B.V. on behalf of the Federation of European Microbiological Societies. PII: S 1 5 6 7 -1 3 5 6 ( 0 2 ) 0 0 1 6 4 -2
Microbiology, 1999
In Candida albicans, three putative histidine kinase genes have been described thus far, including CaSLNI, CaNIKlICOSl and CaHKl. The encoded proteins for C. albicans, CaSlnlp and CaNiklp, which are similar to S l n l p from Saccharomyces cerevisiae and Nik-1 from Neurospora crassa, seem to function in osmoregulation and morphogenesis, respectively. Recently, the isolation of CaHKl, a putative histidine kinase gene from C. albicans has been reported. In addition t o the histidine and aspartyl domains located at its C-terminus as previously described, it is shown here that the N-terminal domain o f Cahklp contains a P-loop motif and a sequence which shows significant homology with the seven C-terminal domains of serinekhreonine kinases. The Ser/Thrhomologous domains of Cahklp could, in fact, correspond to its sensor sequence. CaHKl has been mapped to chromosome 2 and gene deletion studies were undertaken to understand its function. Acahkl mutants are phenotypically different from any other histidine kinase mutants thus far described either in C. albicans or in any other yeast or filamentous fungus. This study demonstrates that Acahkl mutants flocculate extensively in a genedosage-dependent manner under conditions which induce germ-tube formation, such as growth in medium 199 (pH 7.5). The flocculation occurs by an interaction along the hyphal surfaces, probably because of the altered expression o f one or more hyphal-cell-surface components in the Acahkl mutants. These results indicate that CaHKl could be involved in regulating their expression.
Proceedings of the National Academy of Sciences, 1998
Two-component histidine kinases recently have been found in eukaryotic organisms including fungi, slime molds, and plants. We describe the identification of a gene, COS1, from the opportunistic pathogen Candida albicans by using a PCR-based screening strategy. The sequence of COS1 indicates that it encodes a homolog of the histidine kinase Nik-1 from the filamentous fungus Neurospora crassa. COS1 is also identical to a gene called CaNIK1 identified in C. albicans by low stringency hybridization using CaSLN1 as a probe [Nagahashi, S., Mio, T., Yamada-Okabe, T., Arisawa, M., Bussey, H. & Yamada-Okabe, H. (1998) Microbiol. 44, 425-432].
Frontiers in Microbiology
ObjectivesThe histidine kinase (HK) CHK1 and other protein kinases in Candida albicans are key players in the development of hyphae. This study is designed to determine the functional roles of the S_Tkc domain (protein kinase) and the GAF domain of C. albicans CHK1 in hyphal formation and mucosal invasion.MethodsThe domain mutants CHK25 (ΔS_TkcCHK1/Δchk1) and CHK26 (ΔS_TkcΔgafCHK1/Δchk1) were first constructed by the his1-URA3-his1 method and confirmed by sequencing and Southern blots. A mouse tongue infection model was used to evaluate the hyphal invasion and fungal loads in each domain mutant, full-gene deletion mutant CHK21 (chk1Δ/chk1Δ), re-constituted strain CHK23 (chk1Δ/CHK1), and wild type (WT) from day 1 to day 5. The degree of invasion and damage to the oral mucosa of mice in each strain-infected group was evaluated in vivo and compared with germ tube rate and hyphal formation in vitro.ResultWhen compared with severe mucosal damage and massive hyphal formation in WT- or CHK...
Microbiology (Reading, England), 2004
The two-component histidine kinase Chk1p of Candida albicans has been implicated in the regulation of cell wall biosynthesis. Deletion of CHK1 results in avirulence that in part may be due to the increased sensitivity of mutant strains to polymorphonuclear leukocytes. The mutant also does not adhere to human oesophageal tissue in vitro, probably as a consequence of its altered cell wall. In the current study, a CHK1 promoter-lacZ reporter (CHK1prlacZ) construct was expressed in wild-type C. albicans strain CAI4 and in two-component signal transduction mutants to determine the effect of environmental stress conditions on the regulation of CHK1 and the co-regulatory activities among these proteins. It is shown that lacZ expression varied according to the type of growth conditions and incubation time; expression was also influenced by the strain background. lacZ expression in CAI4 was greater at 37 6C and at a pH of 3?5 and in the presence of 4 mM H 2 O 2 , 0?1 mM menadione, 10 % serum or 1?5 M NaCl compared to cells grown at 30 or 42 6C. The increases in expression were time-dependent and not observed until cells were incubated for 120 min in these conditions (P<0?05). As a correlate of the increase in transcription of CHK1-lacZ in the presence of H 2 O 2 , the chk1 mutant was more sensitive than wild-type and revertant cells to H 2 O 2 in vitro. In addition to strain CAI4, we also measured CHK1p-lacZ reporter activity of mutants deleted in genes encoding other two-component proteins such as the response regulator gene SSK1, the histidine kinases, SLN1 and NIK1, and the HOG1 MAP kinase. Of these proteins, Ssk1p and Sln1p are presumed to mediate phosphotransfer to the HOG1 [hyperosmotic glycerol] MAP kinase pathway during oxidative and perhaps osmotic stress in C. albicans. Compared to strain CAI4, lacZ reporter activity increased significantly in the ssk1 mutant under all growth conditions after a 10 and 120 min incubation (P<0?0001). lacZ expression in the ssk1 mutant was less at 42 6C compared to all other growth conditions (P<0?05). Furthermore, lacZ reporter activity also increased in the hog1 mutant of C. albicans. These data suggest that SSK1 and HOG1 indirectly or directly negatively regulate CHK1 under most growth conditions tested. In the sln1 mutant, downregulation of CHK1 was observed in all growth conditions compared to strain CAI4 (P<0?05), while regulation of lacZ in the nik1 mutant was similar to strain CAI4 except when cells were incubated in the presence of 4 mM H 2 O 2 for 120 min (P<0?05). Western blot analysis was used to determine the role of Chk1p in phosphorylation of Hog1p under oxidative or osmotic stress. It was found that Hog1p was phosphorylated in the chk1 mutant similar to wild-type CAF2-1 cells, although the temporal events of phosphorylation differed slightly in mutant cells. These results show that transcription of CHK1, as measured by the lacZ reporter assay, is statistically increased when cells are exposed to several types of stress or when incubated in 10 % serum in a mutant-specific background and at a specific time point. Of importance, our data also suggest that lacZ expression is indirectly or directly regulated by the HOG1 MAP kinase pathway, although a determination of its position in this pathway or in a cross-talking pathway awaits additional studies.
Isolation of a petite mutant from a histidine auxotroph of Candida albicans and its characterization
Mycopathologia, 1998
Respiration-deficient (petite) mutations have been induced in various yeasts, which are categorized as petite-positive. Candida albicans was classified among the petite-negative yeasts. Since then, a few reports have appeared, describing the isolation of petite mutants in C. albicans. We report in the present study on the isolation of a petite mutant of C. albicans-SAR1. This mutant was isolated from a histidine auxotroph of C. albicans after mutagenesis with N-methyl-N'-nitro-N-nitrosoguanidine, thus our petite mutant carries a double mutation. SAR1 was characterized morphologically, biochemically and ultrastructurally. The results revealed differences from the wild type in respect to morphological, physiological and biochemical characteristics. Electron microscopy showed that the cells of the petite mutant contain only very few mitochondria that looked 'thread like' without any cristae. The significance of the mutation in the virulence of the mutant vs. that of the wil...