Influence of dynamic immunization on epidemic spreading in networks (original) (raw)
Related papers
Suppression of epidemic spreading process on multiplex networks via active immunization
Chaos: An Interdisciplinary Journal of Nonlinear Science, 2019
Spatial epidemic spreading, a fundamental dynamical process upon complex networks, attracts huge research interest during the past few decades. To suppress the spreading of epidemic, a couple of e ective methods have been proposed, including node vaccination. Under such a scenario, nodes are immunized passively and fail to reveal the mechanisms of active activity. Here, we suggest one novel model of an observer node, which can identify infection through interacting with infected neighbors and inform the other neighbors for vaccination, on multiplex networks, consisting of epidemic spreading layer and information spreading layer. In detail, the epidemic spreading layer supports susceptibleinfected-recovered process, while observer nodes will be selected according to several algorithms derived from percolation theory. Numerical simulation results show that the algorithm based on large degree performs better than random placement, while the algorithm based on nodes' degree in the information spreading layer performs the best (i.e., the best suppression e cacy is guaranteed when placing observer nodes based on nodes' degree in the information spreading layer). With the help of state probability transition equation, the above phenomena can be validated accurately. Our work thus may shed new light into understanding control of empirical epidemic control.
Enhanced vaccine control of epidemics in adaptive networks
Physical Review E, 2010
We study vaccine control for disease spread on an adaptive network modeling disease avoidance behavior. Control is implemented by adding Poisson-distributed vaccination of susceptibles. We show that vaccine control is much more effective in adaptive networks than in static networks due to feedback interaction between the adaptive network rewiring and the vaccine application. When compared to extinction rates in static social networks, we find that the amount of vaccine resources required to sustain similar rates of extinction are as much as two orders of magnitude lower in adaptive networks.
Vaccination allocation in large dynamic networks
Journal of Big Data, 2017
Event propagation over a network is a complex and frequently studied human phenomena . Historical examples of information exchange between humans in a social network, past and present, can be seen during colonial expansion of the British Empire [4], memes passed between friends on any assortment of social networks on the internet [1] and transmission of human or animal pathogens such as the virus H1N1 over airways . In the information age computer networks can mirror these types of information exchange, with event information being passed along from node to node when network neighbors communicate through various network protocols .
Immunization strategy for epidemic spreading on multilayer networks
EPL (Europhysics Letters), 2015
In many real-world complex systems, individuals have many kind of interactions among them, suggesting that it is necessary to consider a layered structure framework to model systems such as social interactions. This structure can be captured by multilayer networks and can have major effects on the spreading of process that occurs over them, such as epidemics. In this Letter we study a targeted immunization strategy for epidemic spreading over a multilayer network. We apply the strategy in one of the layers and study its effect in all layers of the network disregarding degree-degree correlation among layers. We found that the targeted strategy is not as efficient as in isolated networks, due to the fact that in order to stop the spreading of the disease it is necessary to immunize more than the 80% of the individuals. However, the size of the epidemic is drastically reduced in the layer where the immunization strategy is applied compared to the case with no mitigation strategy. Thus, the immunization strategy has a major effect on the layer were it is applied, but does not efficiently protect the individuals of other layers.
Optimising control of disease spread on networks
Acta Physica Polonica B, 2005
We consider models for control of epidemics on local, global, small-world and scale-free networks, with only partial information accessible about the status of individuals and their connections. The effectiveness of local (e.g. ring vaccination or culling) vs global (e.g. random vaccination) control measures is evaluated, with the aim of minimising the total cost of an epidemic. The costs include direct costs of treating infected individuals as well as costs of treatment. We first consider a random (global) vaccination strategy designed to stop any potential outbreak. We show that if the costs of the preventive vaccination are ignored, the optimal strategy is to vaccinate the whole population, although most of the resources are wasted on preventing a small number of cases. If the vaccination costs are included, or if a local strategy (within a certain neighbourhood of a symptomatic individual) is chosen, there is an optimum number of treated individuals. Inclusion of non-local contacts ('small-worlds' or scale-free networks) increases the levels of preventive (random) vaccination and radius of local treatment necessary for stopping the outbreak at a minimal cost. The number of initial foci also influences our choice of optimal strategy. The size of epidemics and the number of treated individuals increase for outbreaks that are initiated from a larger number of initial foci, but the optimal radius of local control actually decreases. The results are important for designing control strategies based on cost effectiveness.
Transient Dynamics of Epidemic Spreading and Its Mitigation on Large Networks
Proceedings of the Twentieth ACM International Symposium on Mobile Ad Hoc Networking and Computing
In this paper, we aim to understand the transient dynamics of a susceptible-infected (SI) epidemic spreading process on a large network. The SI model has been largely overlooked in the literature, while it is naturally a better fit for modeling the malware propagation in early times when patches/vaccines are not available, or over a wider range of timescales when massive patching is practically infeasible. Nonetheless, its analysis is simply non-trivial, as its important dynamics are all transient and the usual stability/steadystate analysis no longer applies. To this end, we develop a theoretical framework that allows us to obtain an accurate closed-form approximate solution to the original SI dynamics on any arbitrary network, which captures the temporal dynamics over all time and is tighter than the existing approximation, and also to provide a new interpretation via reliability theory. As its applications, we further develop vaccination policies with or without knowledge of already-infected nodes, to mitigate the future epidemic spreading to the extent possible, and demonstrate their effectiveness through numerical simulations. CCS CONCEPTS • Computing methodologies → Modeling methodologies; • Security and privacy → Malware and its mitigation;
Epidemic spreading and immunization strategy in multiplex networks
Journal of Physics: Conference Series, 2015
A more connected world has brought major consequences such as facilitate the spread of diseases all over the world to quickly become epidemics, reason why researchers are concentrated in modeling the propagation of epidemics and outbreaks in multilayer networks. In this networks all nodes interact in different layers with different type of links. However, in many scenarios such as in the society, a multiplex network framework is not completely suitable since not all individuals participate in all layers. In this paper, we use a partially overlapped multiplex network where only a fraction of the individuals are shared by the layers. We develop a mitigation strategy for stopping a disease propagation, considering the Susceptible-Infected-Recover model, in a system consisted by two layers. We consider a random immunization in one of the layers and study the effect of the overlapping fraction in both, the propagation of the disease and the immunization strategy. Using branching theory, we study this scenario theoretically and via simulations and find a lower epidemic threshold than in the case without strategy.
Optimal vaccine allocation to control epidemic outbreaks in arbitrary networks
52nd IEEE Conference on Decision and Control, 2013
We consider the problem of controlling the propagation of an epidemic outbreak in an arbitrary contact network by distributing vaccination resources throughout the network. We analyze a networked version of the Susceptible-Infected-Susceptible (SIS) epidemic model when individuals in the network present different levels of susceptibility to the epidemic. In this context, controlling the spread of an epidemic outbreak can be written as a spectral condition involving the eigenvalues of a matrix that depends on the network structure and the parameters of the model. We study the problem of finding the optimal distribution of vaccines throughout the network to control the spread of an epidemic outbreak. We propose a convex framework to find cost-optimal distribution of vaccination resources when different levels of vaccination are allowed. We also propose a greedy approach with quality guarantees for the case of all-or-nothing vaccination. We illustrate our approaches with numerical simulations in a real social network.
Hub nodes inhibit the outbreak of epidemic under voluntary vaccination
2010
It is commonly believed that epidemic spreading on scale-free networks is difficult to control and that the disease can spread even with a low infection rate, lacking an epidemic threshold. In this paper, we study epidemic spreading on complex networks under the framework of game theory, in which a voluntary vaccination strategy is incorporated. In particular, individuals face the 'dilemma' of vaccination: they have to decide whether or not to vaccinate according to the trade-off between the risk and the side effects or cost of vaccination. Remarkably and quite excitingly, we find that disease outbreak can be more effectively inhibited on scale-free networks than on random networks. This is because the hub nodes of scale-free networks are more inclined to take self-vaccination after balancing the pros and cons. This result is encouraging as it indicates that real-world networks, which are often claimed to be scale free, can be favorably and easily controlled under voluntary vaccination. Our 2 work provides a way of understanding how to prevent the outbreak of diseases under voluntary vaccination, and is expected to provide valuable information on effective disease control and appropriate decision-making.
Local immunization program for susceptible-infected-recovered network epidemic model
Chaos (Woodbury, N.Y.), 2016
The immunization strategies through contact tracing on the susceptible-infected-recovered framework in social networks are modelled to evaluate the cost-effectiveness of information-based vaccination programs with particular focus on the scenario where individuals belonging to a specific set can get vaccinated due to the vaccine shortages and other economic or humanity constraints. By using the block heterogeneous mean-field approach, a series of discrete-time dynamical models is formulated and the condition for epidemic outbreaks can be established which is shown to be not only dependent on the network structure but also closely related to the immunization control parameters. Results show that increasing the immunization strength can effectively raise the epidemic threshold, which is different from the predictions obtained through the susceptible-infected-susceptible network framework, where epidemic threshold is independent of the vaccination strength. Furthermore, a significant d...