Paraconsistentization through antimonotonicity: towards a logic of supplement (original) (raw)

Paraconsistent Logic: A Proof-Theoretical Approach*

2006

A logic is paraconsistent if it allows for non-trivial inconsistent theories. Given the usual definition of inconsistency, the notion of paraconsistent logic seems to rely upon the interpretation of the sign ‘¬’. As paraconsistent logic challenges properties of negation taken to be basic in other contexts, it is disputable that an operator lacking those properties will count as real negation. The conclusion is that there cannot be truly paraconsistent logics. This objection can be met from a substructural perspective since paraconsistent sequent calculi can be built with the same operational rules as classical logic but with slightly different structural rules.

Negation-Free Definitions of Paraconsistency

Electronic Proceedings in Theoretical Computer Science

Paraconsistency is commonly defined and/or characterized as the failure of a principle of explosion. The various standard forms of explosion involve one or more logical operators or connectives, among which the negation operator is the most frequent. In this article, we ask whether a negation operator is essential for describing paraconsistency. In other words, is it possible to describe a notion of paraconsistency that is independent of connectives? We present two such notions of negation-free paraconsistency, one that is completely independent of connectives and another that uses a conjunction-like binary connective that we call fusion. We also derive a notion of quasi-negation from the former, and investigate its properties.

Negation and Paraconsistent Logics

Logica Universalis, 2011

Does there exist any equivalence between the notions of inconsistency and consequence in paraconsistent logics as is present in the classical two valued logic? This is the key issue of this paper. Starting with a language where negation ($${\neg}$$) is the only connective, two sets of axioms for consequence and inconsistency of paraconsistent logics are presented. During this study two

Paraconsistency: Logic and Applications - Springer

A logic is called 'paraconsistent' if it rejects the rule called 'ex contradictione quodlibet', according to which any conclusion follows from inconsistent premises. While logicians have proposed many technically developed paraconsistent logical systems and contemporary philosophers like Graham Priest have advanced the view that some contradictions can be true, and advocated a paraconsistent logic to deal with them, until recent times these systems have been little understood by philosophers. This book presents a comprehensive overview on paraconsistent logical systems to change this situation. The book includes almost every major author currently working in the field. The papers are on the cutting edge of the literature some of which discuss current debates and others present important new ideas. The editors have avoided papers about technical details of paraconsistent logic, but instead concentrated upon works that discuss more "big picture" ideas. Different treatments of paradoxes takes centre stage in many of the papers, but also there are several papers on how to interpret paraconistent logic and some on how it can be applied to philosophy of mathematics, the philosophy of language, and metaphysics.

A Hierarchy of Classical and Paraconsistent Logics

2019

In this article, we will present a number of technical results concerning Classical Logic, ST and related systems. Our main contribution consists in offering a novel identity criterion for logics in general and, therefore, for Classical Logic. In partic- ular, we will firstly generalize the ST phenomenon, thereby obtaining a recursively defined hierarchy of strict-tolerant systems. Secondly, we will prove that the logics in this hierarchy are progressively more classical, although not entirely classical. We will claim that a logic is to be identified with an infinite sequence of conse- quence relations holding between increasingly complex relata: formulae, inferences, metainferences, and so on. As a result, the present proposal allows not only to differentiate Classical Logic from ST, but also from other systems sharing with it their valid metainferences. Finally, we show how these results have interesting con- sequences for some topics in the philosophical logic literature, among them for the debate around Logical Pluralism. The reason being that the discussion concerning this topic is usually carried out employing a rivalry criterion for logics that will need to be modified in light of the present investigation, according to which two logics can be non-identical even if they share the same valid inferences.

Remarks on Paraconsistency and Contradiction

In this paper we propose to take seriously the claim that at least some kinds of paraconsistent negations are subcontrariety forming operators. We shall argue that from an intuitive point of view, by considering paraconsistent negations that way, one needs not worry with true contradictions and the like, given that "true contradictions" are not involved in these paraconsistent logics. Our strategy consists in showing that the natural translation for subcontrariety in formal languages is not a contradiction in natural language, and vice versa. This move shall provide for an intuitive interpretation for paraconsistent negation, which we also discuss here. By putting all those pieces together, we hope a clearer sense of paraconsistency can be made, one which may free us from the need to tame contradictions.

Bridges between Classical and Nonmonotonic Logic

Logic Journal of IGPL, 2003

The purpose of this paper is to take some of the mystery out of what is known as nonmonotonic logic, by showing that it is not as unfamiliar as may at first sight appear. In fact, it is easily accessible to anybody with a background in classical propositional logic, provided that certain misunderstandings are avoided and a tenacious habit is put aside. In effect, there are logics that act as natural bridges between classical consequence and the principal kinds of nonmonotonic logic to be found in the literature. Like classical logic, they are perfectly monotonic, but they already display some of the distinctive features of the nonmonotonic systems. As well as providing easy conceptual passage to the nonmonotonic case these logics, which we call paraclassical, have an interest of their own.

Paraconsistency

Paraconsistency is the study of logical systems with a non-explosive negation such that a pair of contradictory formulas (with respect to such negation) does not necessarily imply triviality, discordant to what would be expected by contemporary logical orthodoxy. From a purely logical point of view, the significance of paraconsistency relies on the meticulous distinction between the general notions of contradictoriness and triviality of a theory—respectively, the fact that a given theory proves a proposition and its negation, and the fact that a given theory proves any proposition (in the language of its underlying logic). Aside from this simple rationale, the formal techniques and approaches that meet the latter definitional requirement are manifold. Furthermore, it is not solely the logical-mathematical properties of such systems that are open to debate. Rather, there are several foundational and philosophical questions worth studying, including the very question about the nature of the contradictions allowed by paraconsistentists. This entry aims to advance a brief account of some distinct approaches to paraconsistency, providing a panorama on the development of paraconsistent logic.

What is a Paraconsistent Logic

Paraconsistent logics are logical systems that reject the classical conception, usually dubbed Explosion, that a contradiction implies everything. However, the received view about paraconsistency focuses only the inferential version of Explosion, which is concerned with formulae, thereby overlooking other possible accounts. In this paper, we propose to focus, additionally, on a meta-inferential version of Explosion, i.e. which is concerned with inferences or sequents. In doing so, we will offer a new characterization of paraconsistency by means of which a logic is paraconsistent if it invalidates either the inferential or the meta-inferential notion of Explosion. We show the non-triviality of this criterion by discussing a number of logics. On the one hand, logics which validate an invalidate both versions of Explosion, such as classical logic and Asenjo-Priest's 3-valued logic LP. On the other hand, logics which validate one version of Explosion but not the other, such as the substructural logics TS and ST, introduced by Malinowski and Cobreros, Egré, Ripley and van Rooij, which are obtained via Malinowski's and Frankowski's q-and p-matrices, respectively.