Analysis of FMRFamide-like peptide (FLP) diversity in phylum Nematoda (original) (raw)

The FLP-side of nematodes

Trends in Parasitology, 2006

The central role of FMRFamide-like peptides (FLPs) in nematode motor and sensory capabilities makes FLP signalling an appealing target for new parasiticides. Accumulating evidence has revealed an astounding level of FLP sequence conservation and diversity in the phylum Nematoda, and preliminary work has begun to identify the nematode FLP receptor complement in Caenorhabditis elegans, with a view to investigating their

FMRFamide-like peptides in root knot nematodes and their potential role in nematode physiology

Journal of Helminthology, 2009

FMRFamide-like peptides (FLPs) are a diverse group of neuropeptides that are expressed abundantly in nematodes. They exert potent physiological effects on locomotory, feeding and reproductive musculature and also act as neuromodulators. However, little is known about the specific expression patterns and functions of individual peptides. The current study employed rapid amplification of cDNA ends-polymerase chain reaction (RACE-PCR) to characterizeflpgenes from infective juveniles of the root knot nematodes,Meloidogyne incognitaandMeloidogyne minor. The peptides identified from these transcripts are sequelogs of FLPs from the free-living nematode,Caenorhabditis elegans; the genes have therefore been designated asMi-flp-1,Mi-flp-7,Mi-flp-12,Mm-flp-12andMi-flp-14.Mi-flp-1encodes five FLPs with the common C-terminal moiety, NFLRFamide.Mi-flp-7encodes two copies of APLDRSALVRFamide and APLDRAAMVRFamide and one copy of APFDRSSMVRFamide.Mi-flp-12andMm-flp-12encode the novel peptide KNNKFEF...

New insights into the FLPergic complements of parasitic nematodes: Informing deorphanisation approaches

EuPA Open Proteomics, 2014

FMRFamide-like peptide (FLP) receptors are appealing as putative anthelmintic targets. To date, 31 flp-encoding genes have been identified in Caenorhabditis elegans and thirteen FLP-activated G-protein coupled receptors (FLP-GPCRs) have been reported. The lack of knowledge on FLPs and FLP-GPCRs in parasites impedes their functional characterisation and chemotherapeutic exploitation. Using homology-based BLAST searches and phylogenetic analyses this study describes the identification of putative flp and flp-GPCR gene homologues in 17 nematode parasites providing the first pan-phylum genome-based overview of the FLPergic complement. These data will facilitate FLP-receptor deorphanisation efforts in the quest for novel control targets for nematode parasites.

Neuropeptide-like protein diversity in phylum Nematoda

International Journal for Parasitology, 2008

This study reports the identification of nematode neuropeptide-like protein (nlp) sequelogs from the GenBank expressed sequence tag (EST) database, using BLAST (Basic Local Alignment Search Tool) search methodology. Search strings derived from peptides encoded by the 45 known Caenorhabditis elegans nlp genes were used to identify more than 1000 ESTs encoding a total of 26 multi-species nlp sequelogs. The remaining 18 nlps (nlp-4,-16,-24 through-36,-39,-41 and-45) were identified only in C. elegans, while the sole EST representative of nlp-23 was from Caenorhabditis remanei. Several ESTs encoding putative antibacterial peptides similar to those encoded by the C. elegans genes nlp-24-33 were observed in several parasite species. A novel gene (nlp-46) was identified, encoding a single, amidated dodecapeptide (NIA[I/T]GR[G/A]DG[F/L]RPG) in eight species. Secretory signal peptides were identified in at least one species representing each nlp sequelog, confirming that all 46 nematode nlp genes encode secretory peptides. A random subset of C. elegans NLPs was tested physiologically in Ascaris suum ovijector and body wall muscle bioassays. None of the peptides tested were able to modulate ovijector activity, while only three displayed measurable myoactivity on somatic body wall muscle. AFAAGWNRamide (from nlp-23) and AVNPFLDSIamide (nlp-3) both produced a relaxation of body wall muscle, while AIPFNGGMYamide (nlp-10) induced a transient contraction. Numerical analyses of nlp-encoding ESTs demonstrate that nlp-3,-13,-14,-15 and-18 are amongst the most highly represented transcripts in the dataset. Using available bioinformatics resources, this study delineates the nlp complement of phylum Nematoda, providing a rich source of neuropeptide ligands for deorphanisation of nematode neuropeptide receptors.

Neuropeptide Gene Families in the Nematode Caenorhabditis elegansa

Annals of The New York Academy of Sciences, 1999

Neuropeptides have diverse roles in the function and development of the nervous system. With the completion of the sequencing of the C. elegans genome, rapid identification of nematode neuropeptide genes is possible. To date, 41 C. elegans neuropeptide genes have been identified. Of these genes, 20 genes, named flp (FMRFamide-like peptide) genes, encode FMRFamide-related proteins (FaRPs). Deletion of one of the flp genes, flp-1, results in several behavioral defects, suggesting that at least one flp gene is not functionally redundant with other flp genes. Twenty-one genes, named neuropeptide-like protein (nlp) genes, encode peptides distinct from the FaRP family. The predicted nlp-1 and nlp-2 neuropeptides have modest similarity to buccalin and myomodulin, respectively. Cellular expression patterns and genetic analysis of flp and nlp genes suggest that neuropeptides in nematodes also have widespead and varied roles in nervous system function.

Molecular determinants archetypical to the phylum Nematoda

BMC Genomics

Background: Nematoda diverged from other animals between 600-1,200 million years ago and has become one of the most diverse animal phyla on earth. Most nematodes are free-living animals, but many are parasites of plants and animals including humans, posing major ecological and economical challenges around the world.

A transcriptomic analysis of the phylum Nematoda

Nature genetics, 2004

The phylum Nematoda occupies a huge range of ecological niches, from free-living microbivores to human parasites. We analyzed the genomic biology of the phylum using 265,494 expressed-sequence tag sequences, corresponding to 93,645 putative genes, from 30 species, including 28 parasites. From 35% to 70% of each species' genes had significant similarity to proteins from the model nematode Caenorhabditis elegans. More than half of the putative genes were unique to the phylum, and 23% were unique to the species from which they were derived. We have not yet come close to exhausting the genomic diversity of the phylum. We identified more than 2,600 different known protein domains, some of which had differential abundances between major taxonomic groups of nematodes. We also defined 4,228 nematode-specific protein families from nematode-restricted genes: this class of genes probably underpins species- and higher-level taxonomic disparity. Nematode-specific families are particularly in...

VRFamide peptides in Caenorhabditis elegans and Ascaris suum : AMRNALVRFG

2016

FMRFamide-like peptide (FLP) signalling systems are core to nematode neuromuscular function. Novel drug discovery efforts associated with nematode FLP/FLP receptor biology are advanced through the accumulation of basic biological data that can reveal subtle complexities within the neuropeptidergic system. This study reports the characterisation of FMRFamide-like peptide encoding gene-11 (flp-11) and FMRFamide-like peptide encoding gene-32 (flp-32), two distinct flp genes which encode the analogous peptide, AMRN(A/S)LVRFamide, in multiple nematode species-the only known example of this phenomenon within the FLPergic system of nematodes. Using bioinformatics, in situ hybridisation, immunocytochemistry and behavioural assays we show that: (i) flp-11 and-32 are distinct flp genes expressed individually or in tandem across multiple nematode species, where they encode a highly similar peptide; (ii) flp-11 does not appear to be the most widely expressed flp in Caenorhabditis elegans; (iii) in species expressing both flp-11 and flp-32, flp-11 displays a conserved, restricted expression pattern across nematode clades and lifestyles; (iv) in species expressing both flp-11 and flp-32, flp-32 expression is more widespread and less conserved than flp-11; (v) in species expressing only flp-11, the flp-11 expression profile is more similar to the flp-32 profile observed in species expressing both; and (vi) FLP-11 peptides inhibit motor function in multiple nematode species. The biological significance and evolutionary origin of flp-11 and-32 peptide duplication remains unclear despite attempts to identify a common ancestor; this may become clearer as the availability of genomic data improves. This work provides insight into the complexity of the neuropeptidergic system in nematodes, and begins to examine how nematodes may compensate for structural neuronal simplicity. From a parasite control standpoint, this work underscores the importance of basic biological data, and has wider implications for the utility of C. elegans as a model for parasite neurobiology.