Learning In Spike Trains: Estimating Within-Session Changes In Firing Rate Using Weighted Interpolation (original) (raw)

Trial-by-trial estimation of amplitude and latency variability in neuronal spike trains

Journal of Neuroscience Methods, 2007

The rate function underlying single-trial spike trains can vary from trial to trial. We propose to estimate the amplitude and latency variability in single-trial neuronal spike trains on a trial-by-trial basis. The firing rate over a trial is modeled by a family of rate profiles with trial-invariant waveform and trial-dependent amplitude scaling factors and latency shifts. Using a Bayesian inference framework we derive an iterative fixedpoint algorithm from which the single-trial amplitude scaling factors and latency shifts are estimated. We test the performance of the algorithm on simulated data and then apply it to actual neuronal recordings from the sensorimotor cortex of the monkey.

Parametric models to relate spike train and LFP dynamics with neural information processing

Frontiers in Computational Neuroscience, 2012

Spike trains and local field potentials (LFPs) resulting from extracellular current flows provide a substrate for neural information processing. Understanding the neural code from simultaneous spike-field recordings and subsequent decoding of information processing events will have widespread applications. One way to demonstrate an understanding of the neural code, with particular advantages for the development of applications, is to formulate a parametric statistical model of neural activity and its covariates. Here, we propose a set of parametric spike-field models (unified models) that can be used with existing decoding algorithms to reveal the timing of task or stimulus specific processing. Our proposed unified modeling framework captures the effects of two important features of information processing: time-varying stimulus-driven inputs and ongoing background activity that occurs even in the absence of environmental inputs. We have applied this framework for decoding neural latencies in simulated and experimentally recorded spike-field sessions obtained from the lateral intraparietal area (LIP) of awake, behaving monkeys performing cued look-and-reach movements to spatial targets. Using both simulated and experimental data, we find that estimates of trial-by-trial parameters are not significantly affected by the presence of ongoing background activity. However, including background activity in the unified model improves goodness of fit for predicting individual spiking events. Uncovering the relationship between the model parameters and the timing of movements offers new ways to test hypotheses about the relationship between neural activity and behavior. We obtained significant spike-field onset time correlations from single trials using a previously published data set where significantly strong correlation was only obtained through trial averaging. We also found that unified models extracted a stronger relationship between neural response latency and trial-by-trial behavioral performance than existing models of neural information processing. Our results highlight the utility of the unified modeling framework for characterizing spike-LFP recordings obtained during behavioral performance.

Inferring Neural Firing Rates from Spike Trains Using Gaussian Processes

Neural Information Processing Systems, 2007

Neural spike trains present challenges to analytical efforts due to their noisy, spiking nature. Many studies of neuroscientific and neural prosthetic importance rely on a smoothed, denoised estimate of the spike train's underlying firing rate. Current techniques to find time-varying firing rates require ad hoc choices of parameters, offer no confidence intervals on their estimates, and can obscure potentially important single trial variability. We present a new method, based on a Gaussian Process prior, for inferring probabilistically optimal estimates of firing rate functions underlying single or multiple neural spike trains. We test the performance of the method on simulated data and experimentally gathered neural spike trains, and we demonstrate improvements over conventional estimators.

Single-trial estimation of neuronal firing rates: From single-neuron spike trains to population activity

Journal of Neuroscience Methods, 1999

We present a method to estimate the neuronal firing rate from single-trial spike trains. The method, based on convolution of the spike train with a fixed kernel function, is calibrated by means of simulated spike trains for a representative selection of realistic dynamic rate functions. We derive rules for the optimized use and performance of the kernel method, specifically with respect to an effective choice of the shape and width of the kernel functions. An application of our technique to the on-line, single-trial reconstruction of arm movement trajectories from multiple single-unit spike trains using dynamic population vectors illustrates a possible use of the proposed method.

Improved Spike-Sorting By Modeling Firing Statistics and Burst-Dependent Spike Amplitude Attenuation: A Markov Chain Monte Carlo Approach

Journal of Neurophysiology, 2004

Spike-sorting techniques attempt to classify a series of noisy electrical waveforms according to the identity of the neurons that generated them. Existing techniques perform this classification ignoring several properties of actual neurons that can ultimately improve classification performance. In this study, we propose a more realistic spike train generation model. It incorporates both a description of "nontrivial" (i.e., non-Poisson) neuronal discharge statistics and a description of spike waveform dynamics (e.g., the events amplitude decays for short interspike intervals). We show that this spike train generation model is analogous to a one-dimensional Potts spin-glass model. We can therefore tailor to our particular case the computational methods that have been developed in fields where Potts models are extensively used, including statistical physics and image restoration. These methods are based on the construction of a Markov chain in the space of model parameters and spike train configurations, where a configuration is defined by specifying a neuron of origin for each spike. This Markov chain is built such that its unique stationary density is the posterior density of model parameters and configurations given the observed data. A Monte Carlo simulation of the Markov chain is then used to estimate the posterior density. We illustrate the way to build the transition matrix of the Markov chain with a simple, but realistic, model for data generation. We use simulated data to illustrate the performance of the method and to show that this approach can easily cope with neurons firing doublets of spikes and/or generating spikes with highly dynamic waveforms. The method cannot automatically find the "correct" number of neurons in the data. User input is required for this important problem and we illustrate how this can be done. We finally discuss further developments of the method.

State-Space Algorithms for Estimating Spike Rate Functions

Computational Intelligence and Neuroscience, 2010

The accurate characterization of spike firing rates including the determination of when changes in activity occur is a fundamental issue in the analysis of neurophysiological data. Here we describe a state-space model for estimating the spike rate function that provides a maximum likelihood estimate of the spike rate, model goodness-of-fit assessments, as well as confidence intervals for the spike rate function and any other associated quantities of interest. Using simulated spike data, we first compare the performance of the state-space approach with that of Bayesian adaptive regression splines (BARS) and a simple cubic spline smoothing algorithm. We show that the state-space model is computationally efficient and comparable with other spline approaches. Our results suggest both a theoretically sound and practical approach for estimating spike rate functions that is applicable to a wide range of neurophysiological data.

Temporal spike pattern learning

Physical Review E, 2008

Welcome to CNS*2008! The international Computational Neuroscience meeting (CNS) has been a premier forum for presenting experimental and theoretical results exploring the biology of computation in the nervous system for the last 17 years. The meeting is organized by the Organization for Computational Neurosciences (OCNS), a non-profit organization governed by an international executive committee and board of directors. A separate program committee is responsible for the scientific program of the meeting. Participants at the meeting are from academia and industry. The meeting not only provides a venue for research presentation and discussion by senior scientists but actively offers a forum for promoting and supporting young scientists and students from around the world.

Statistical analysis of temporal evolution in single-neuron firing rates

Biostatistics, 2002

A fundamental methodology in neurophysiology involves recording the electrical signals associated with individual neurons within brains of awake behaving animals. Traditional statistical analyses have relied mainly on mean firing rates over some epoch (often several hundred milliseconds) that are compared across experimental conditions by analysis of variance. Often, however, the time course of the neuronal firing patterns is of interest, and a more refined procedure can produce substantial additional information. In this paper we compare neuronal firing in the supplementary eye field of a macaque monkey across two experimental conditions. We take the electrical discharges, or 'spikes', to be arrivals in a inhomogeneous Poisson process and then model the firing intensity function using both a simple parametric form and more flexible splines. Our main interest is in making inferences about certain characteristics of the intensity, including the timing of the maximal firing rate. We examine data from 84 neurons individually and also combine results into a hierarchical model. We use Bayesian estimation methods and frequentist significance tests based on a nonparametric bootstrap procedure. We are thereby able to conclude that a substantial fraction of the neurons exhibit important temporal differences in firing intensity across the two conditions, and we quantify the effect across the population of neurons.

Inferring spike-timing-dependent plasticity from spike train data

Abstract Synaptic plasticity underlies learning and is thus central for development, memory, and recovery from injury. However, it is often difficult to detect changes in synaptic strength in vivo, since intracellular recordings are experimentally challenging. Here we present two methods aimed at inferring changes in the coupling between pairs of neurons from extracellularly recorded spike trains.