Quantum spacetime: what do we know (original) (raw)

Spacetime and the Philosophical Challenge of Quantum Gravity

1999

We survey some philosophical aspects of the search for a quantum theory of gravity, emphasising how quantum gravity throws into doubt the treatment of spacetime common to the two `ingredient theories' (quantum theory and general relativity), as a 4-dimensional manifold equipped with a Lorentzian metric. After an introduction, we briefly review the conceptual problems of the ingredient theories and introduce the enterprise of quantum gravity We then describe how three main research programmes in quantum gravity treat four topics of particular importance: the scope of standard quantum theory; the nature of spacetime; spacetime diffeomorphisms, and the so-called problem of time. By and large, these programmes accept most of the ingredient theories' treatment of spacetime, albeit with a metric with some type of quantum nature; but they also suggest that the treatment has fundamental limitations. This prompts the idea of going further: either by quantizing structures other than t...

Against the disappearance of spacetime in quantum gravity

Synthese, 2019

This paper argues against the proposal to draw from current research into a physical theory of quantum gravity the ontological conclusion that spacetime or spatiotemporal relations are not fundamental. As things stand, the status of this proposal is like the one of all the other claims about radical changes in ontology that were made during the development of quantum mechanics and quantum field theory. However, none of these claims held up to scrutiny as a consequence of the physics once the theory was established and a serious discussion about its ontology had begun. Furthermore, the paper argues that if spacetime is to be recovered through a functionalist procedure in a theory that admits no fundamental spacetime, standard functionalism cannot serve as a model: all the known functional definitions are definitions in terms of a causal role for the motion of physical objects and hence presuppose spatiotemporal relations.

GRAVITY IN QUANTUM SPACE–TIME

2010

The literature on quantum-gravity-inspired scenarios for the quantization of space–time has so far focused on particle-physics-like studies. This is partly justified by the present limitations of our understanding of quantum gravity theories, but we here argue that valuable insight can be gained through semi-heuristic analyses of the implications for gravitational phenomena of some results obtained in the quantum space–time literature.

Brief Introduction to Quantum Gravity

Iconic Research and Engineering Journals, 2019

Quantum gravity is a field of theoretical physics that seeks to describe gravity according to the principles of quantum mechanics, and where quantum effects cannot be ignored, as almost compact astrophysical objects where gravity effects are strong. The current understanding of gravity is based on Albert Einstein's general theory of relativity, which is formulated within the framework of classical physics. On the other hand, the other three fundamental forces of physics are described within the framework of quantum mechanics and quantum field theory, radically different formalisms for describing physical phenomena. It is sometimes argued that a description of quantum gravity is necessary based on the fact that a classical system cannot be consistently coupled with a quantum system. Although a quantum theory of gravity may be necessary to reconcile general relativity with the principles of quantum mechanics, difficulties arise when applying the usual prescriptions of quantum field theory to the force of gravity via gravitational bosons. Indexed Terms-gravity, quantum, and general relativity.

Aspects of quantum gravity phenomenology

2015

Quantum gravity effects modify the Heisenberg's uncertainty principle to the generalized uncertainty principle (GUP). Earlier work showed that the GUP-induced corrections to the Schrödinger equation, when applied to a non-relativistic particle in a one-dimensional box, led to the quantization of length. Similarly, corrections to the Klein-Gordon and the Dirac equations, gave rise to length, area and volume quantizations. These results suggest a fundamental granular structure of space. This thesis investigates how spacetime curvature and gravity might influence this discreteness of space. In particular, by adding a weak background gravitational field to the above three quantum equations, it is shown that quantization of lengths, areas and volumes continue to hold. Although the nature of this new quantization is quite complex, under proper limits, it reduces to cases without gravity. These results indicate the universality of quantum gravity effects. I am thankful to my supervisor Dr. Saurya Das for his inspiring guidance, constructive criticism, friendly advice and academic as well as non-academic support throughout the research project. I would like to express my gratitude to my committee members Dr. Mark Walton and Dr. Kent Peacock for all the valuable suggestions and comments they provided. I would also like to thank my family and friends for their help and encouragement. v Contents List of Figures viii vi 3.6.1 Case 1 : Length quantization along x axis .

Gravity, Geometry and the Quantum

2009

At the beginning of the 20th century, Einstein revolutionized the notions of space and time, first through special relativity and then, a decade later, through general relativity. Conceptual ideas underlying general relativity are explained and its physical ramifications summarized in general terms, without recourse to advanced mathematics. This theory is perhaps the most sublime creation of the human mind. Nonetheless, it has become increasingly clear that it too has serious limitations which can be overcome only through another dramatic revision of our notions of space and time. The article concludes by providing glimpses of what awaits us in the 21st century.

Quantum gravity as the unification of general relativity and quantum mechanics

2020

A nonstandard viewpoint to quantum gravity is discussed. General relativity and quantum mechanics are to be related as two descriptions of the same, e.g. as Heisenberg's matrix mechanics and Schrödinger's wave mechanics merged in the contemporary quantum mechanics. From the viewpoint of general relativity one can search for that generalization of relativity implying the invariance "within-out of" of the same system.

Quantum spacetime without observers: Ontological clarity and the conceptual founations of quantum gravity

2001

We explore the possibility of a Bohmian approach to the problem of finding a quantum theory incorporating gravitational phenomena. The major conceptual problems of canonical quantum gravity are the problem of time and the problem of diffeomorphism invariant observables. We find that these problems are artifacts of the subjectivity and vagueness inherent in the framework of orthodox quantum theory. When we insist upon ontological clarity-the distinguishing characteristic of a Bohmian approach-these conceptual problems vanish. We shall also discuss the implications of a Bohmian perspective for the significance of the wave function, concluding with unbridled speculation as to why the universe should be governed by laws so apparently bizarre as those of quantum mechanics.

On the Foundation of Space and Time by Quantum-Events

Foundations of Physics, 2021

The true nature of space and time has been a topic of natural philosophy, passed down since the presocratic era. In modern times reflection has particularly been inspired by the physical theories of Newton and Einstein and, more recently, by the quest for a theory of quantum gravity. In this paper we want to specify the idea that material systems and their spatio-temporal distances emerge from quantum-events. We will show a mechanism, by which quantum-events induce a metric field between material systems, which is governed by Einstein's equation including a cosmological constant.