On the Foundation of Space and Time by Quantum-Events (original) (raw)
Related papers
On Spontaneous Quantum-Events and the Emergence of Space-Time
Journal of Modern Physics, 2020
We show that the real existence of quantum-events, resulting from spontaneously broken unitary-evolution by quantum-transactions, can explain the dynamic metric of space-time, governed by Einstein's equation, if light-clocks are being used to measure the rhythm of events. In the derivation of Einstein's equation there naturally arises a term for a cosmological constant Λ .
Quantum Mechanics on a Space and Time Foundation
The possibility of explaining quantum phenomena on a spatial-temporal foundation is developed further. Motivation for this alternative investigation has its origins in the EPR paradox. Analysis of Bell inequalities identified the assumption of metric variable-type for physical quantities, additional to that of local causality. Similar analysis is extended to EPR-steering, Hardy non-locality and the more recently introduced Cabello quantum contextuality inequalities. The same algebraic assumption is present in these later configurations. Because of the nexus between variable-type and underlying geometry, and by implication space structure, violation of EPR experiments can be attributed to space being non-metric. Analysis of Heisenberg gedanken experiments leads to the same conclusion. Quantum mechanics, including also QFT, is then foundationally explainable in terms of space, time and geometry consistent with relativity.
Spacetime and the Philosophical Challenge of Quantum Gravity
1999
We survey some philosophical aspects of the search for a quantum theory of gravity, emphasising how quantum gravity throws into doubt the treatment of spacetime common to the two `ingredient theories' (quantum theory and general relativity), as a 4-dimensional manifold equipped with a Lorentzian metric. After an introduction, we briefly review the conceptual problems of the ingredient theories and introduce the enterprise of quantum gravity We then describe how three main research programmes in quantum gravity treat four topics of particular importance: the scope of standard quantum theory; the nature of spacetime; spacetime diffeomorphisms, and the so-called problem of time. By and large, these programmes accept most of the ingredient theories' treatment of spacetime, albeit with a metric with some type of quantum nature; but they also suggest that the treatment has fundamental limitations. This prompts the idea of going further: either by quantizing structures other than t...
Quantum Mechanics in Space and Time
The possibility that quantum mechanics is foundationally the same as classical theories in explaining phenomena in space and time is postulated. Such a view is motivated by interpreting the experimental violation of Bell inequalities as resulting from questions of geometry and algebraic representation of variables, and thereby the structure of space, rather than realism or locality. While time remains Euclidean in the proposed new structure, space is described by Projective geometry. A dual geometry facilitates description of a physically real quantum particle trajectory. Implications for the physical basis of Bohmian mechanics is briefly examined, and found that the hidden variables pilot-wave model is local. Conceptually, the consequence of this proposal is that quantum mechanics has common ground with relativity as ultimately geometrical. This permits the derivation of physically meaningful quantum Lorentz transformations. Departure from classical notions of measurability is discussed.
Foundational Issues Relating Spacetime, Matter, and Quantum Mechanics
Journal of Physics: Conference Series, 2019
This article proposes the following themes: 1. Space time must be discrete at the micro level. 2. Holonomy is central to any foundational approach to relating spacetime and quantum mechanics. 3. The gravitational field equations should be trace free: gravity is essentially a conformal theory. 4. Times passes; past, present, and future are fundamentally different. 5. Causation is not only bottom-up: contextual effects occur, associated with symmetry breaking 6. Theories must adequately take account of the quantum measurement issue 7. Penrose’s entropy issue is a real issue for cosmology that must be taken into account.
Space-time, relativity and quantum mechanics: In search of a deeper connection
It has been shown that the Lorentz transformations in special relativity can be derived in terms of the principle of relativity and certain properties of space and time such as homogeneity. In this paper, we argue that the free Schrodinger equation in quantum mechanics may also be regarded as a consequence of the homogeneity of space and time and the principle of relativity when assuming linearity of time evolution.
A New Look at Space-Time Towards a Unified Quantum Geometry
Abstract The fundamental relation between space and time is motion expressed as the ratio of space over time for motion in space and the ratio of time over space for motion in time. This indicates that space and time are co-existent reciprocal aspects of motion. While inseparable and interdependent both space and time have distinct geometric properties. There are two fundamental quantum holographic interference patterns which most closely exemplify these structural properties. These are separately identified and defined consistent with the space-time reciprocal relationship. Quantum time potentials and space time networks are defined. The first network consists of two interacting quantum time potentials forming a space-time network whereby space is an emergent feature; there being an inverse structure with inverse properties. The phenomenon of mass and force are emergent features from the various permutations of interconnections between nodes within this space-time network. The resulting structure implies the existence of a coordinate system where each node represents coordinates defined by the rays from each pole. The coordinates form an information field and indicate that space and time ARE information, The connections between the nodes are determined by pre-mathematical connection algorithms indicating the underlying mechanism of creation. Further properties of the space-time network are identified and reveal underlying mechanisms to account for elusive and anomalous physical phenomenon including non-locality, quantum entanglement and quantum gravity.
Quantum spacetime: what do we know
I discuss nature and origin of the problem of quantum gravity. I examine the knowledge that may guide us in addressing this problem, and the reliability of such knowledge. In particular, I discuss the subtle modification of the notions of space and time engendered by general relativity, and how these might merge into quantum theory. I also present some reflections on methodological questions, and on some general issues in philosophy of science which are are raised by, or a relevant for, the research on quantum gravity.
Gravity, Geometry and the Quantum
2009
At the beginning of the 20th century, Einstein revolutionized the notions of space and time, first through special relativity and then, a decade later, through general relativity. Conceptual ideas underlying general relativity are explained and its physical ramifications summarized in general terms, without recourse to advanced mathematics. This theory is perhaps the most sublime creation of the human mind. Nonetheless, it has become increasingly clear that it too has serious limitations which can be overcome only through another dramatic revision of our notions of space and time. The article concludes by providing glimpses of what awaits us in the 21st century.