3D-Printable Bioactivated Nanocellulose-Alginate Hydrogels (original) (raw)
Related papers
3D Printability of Alginate-Carboxymethyl Cellulose Hydrogel
Materials (Basel, Switzerland), 2018
Three-dimensional (3D) bio-printing is a revolutionary technology to reproduce a 3D functional living tissue scaffold in-vitro through controlled layer-by-layer deposition of biomaterials along with high precision positioning of cells. Due to its bio-compatibility, natural hydrogels are commonly considered as the scaffold material. However, the mechanical integrity of a hydrogel material, especially in 3D scaffold architecture, is an issue. In this research, a novel hybrid hydrogel, that is, sodium alginate with carboxymethyl cellulose (CMC) is developed and systematic quantitative characterization tests are conducted to validate its printability, shape fidelity and cell viability. The outcome of the rheological and mechanical test, filament collapse and fusion test demonstrate the favorable shape fidelity. Three-dimensional scaffold structures are fabricated with the pancreatic cancer cell, BxPC3 and the 86% cell viability is recorded after 23 days. This hybrid hydrogel can be a po...
Polymers
3D printing is an emerging and powerful technique to create shape-defined three-dimensional structures for tissue engineering applications. Herein, different alginate–cellulose formulations were optimized to be used as printable inks. Alginate (Alg) was chosen as the main component of the scaffold due to its tunable mechanical properties, rapid gelation, and non-toxicity, whereas microcrystalline cellulose (MCC) was added to the hydrogel to modulate its mechanical properties for printing. Additionally, Fmoc-FFY (Fmoc: 9-fluorenylmethoxycarbonyl; F: phenylalanine; Y: tyrosine), a self-assembled peptide that promotes cell adhesion was incorporated into the ink without modifying its rheological properties and shear-thinning behavior. Then, 3D-printed scaffolds made of Alg, 40% of MCC inks and Fmoc-FFY peptide were characterized by scanning electron microscopy and infrared spectroscopy, confirming the morphological microstructure of the hydrogel scaffolds with edged particles of MCC hom...
3D Bioprinted Nanocellulose-Based Hydrogels for Tissue Engineering Applications: A Brief Review
Polymers, 2019
Nanocellulosic materials, such as cellulose nanocrystals, cellulose nanofibers, and bacterial nanocellulose, that display high surface area, mechanical strength, biodegradability, and tunable surface chemistry have attracted great attention over the last decade for biomedical applications. Simultaneously, 3D printing is revolutionizing the field of biomedical engineering, which enables the fast and on-demand printing of customizable scaffolds, tissues, and organs. Nanocellulosic materials hold tremendous potential for 3D bioprinting due to their printability, their shear thinning behavior, their ability to live cell support and owing to their excellent biocompatibility. The amalgamation of nanocellulose-based feedstocks and 3D bioprinting is therefore of critical interest for the development of advanced functional 3D hydrogels. In this context, this review briefly discusses the most recent key developments and challenges in 3D bioprinting nanocellulose-based hydrogel constructs that...
3D printed scaffolds with gradient porosity based on a cellulose nanocrystal hydrogel
Nanoscale, 2018
3-Dimensional (3D) printing provides a unique methodology for the customization of biomedical scaffolds with respect to size, shape, pore structure and pore orientation useful for tissue repair and regeneration. 3D printing was used to fabricate fully bio-based porous scaffolds of a double crosslinked interpenetrating polymer network (IPN) from a hydrogel ink of sodium alginate and gelatin (SA/G) reinforced with cellulose nanocrystals (CNCs). CNCs provided favorable rheological properties required for 3D printing. The 3D printed scaffolds were crosslinked sequentially via covalent and ionic reactions resulting in dimensionally stable hydrogel scaffolds with pore sizes of 80-2125 μm and nanoscaled pore wall roughness (visible from scanning electron microscopy) favorable for cell interaction. The 2D wide angle X-ray scattering studies showed that the nanocrystals orient preferably in the printing direction; the degree of orientation varied between 61-76%. The 3D printing pathways were...
3D printing of nano-cellulosic biomaterials for medical applications
Current Opinion in Biomedical Engineering, 2017
Nanoscaled versions of cellulose viz. cellulose nanofibers (CNF) or cellulose nanocrystals (CNC) isolated from natural resources are being used extensively since the past decade in the biomedical field e.g. for tissue engineering, implants, drug delivery systems, cardiovascular devices, and wound healing due to their remarkable mechanical, chemical and biocompatible properties. In the recent years, 3D printing of nanocellulose in combination with polymers is being studied as a viable route to future regenerative therapy. The printability of nanocellulose hydrogels owing to their shear thinning behavior and the possibility to support living cells allows 3D bioprinting using nanocellulose, a recent development which holds tremendous potential. Highlights • 3D printing of nanocellulosic materials is used in biomedical application • Nanocellulose hydrogels have shear thinning behavior and supports living cells • Nanocellulose based biocompatible ink ,CELLINK® , is commercialized by CELLINK AB, Sweden
Printability of Double Network Alginate-Based Hydrogel for 3D Bio-Printed Complex Structures
Frontiers in Bioengineering and Biotechnology
Three-dimensional (3D) bio-printing has recently emerged as a crucial technology in tissue engineering, yet there are still challenges in selecting materials to obtain good print quality. Therefore, it is essential to study the influence of the chosen material (i.e., bio-ink) and the printing parameters on the final result. The “printability” of a bio-ink indicates its suitability for bio-printing. Hydrogels are a great choice because of their biocompatibility, but their printability is crucial for exploiting their properties and ensuring high printing accuracy. However, the printing settings are seldom addressed when printing hydrogels. In this context, this study explored the printability of double network (DN) hydrogels, from printing lines (1D structures) to lattices (2D structures) and 3D tubular structures, with a focus on printing accuracy. The DN hydrogel has two entangled cross-linked networks and a balanced mechanical performance combining high strength, toughness, and bio...
Journal of Biomedical Materials Research Part B: Applied Biomaterials, 2020
The concept of adding inorganic fillers into hydrogels to form hydrogel nanocomposites often provides advantageous properties which can be exploited for successful 3D biofabrication. In this study, a new composite hydrogel combining oxidized alginate-gelatin (ADA-GEL) hydrogel and laponite nanoclay as inorganic nanofiller was successfully developed and characterized. The results showed that the addition of 0.5% (wt/vol) laponite nanoplatelets improved the printability of ADA-GEL hydrogels enabling the fabrication of detailed structures since a low effect of material spreading and reduced tendency to pore closure appeared. Furthermore, a comparison of different needle types (cylindrical and conical; same inner diameter of 250 μm) in filament fusion test showed that the pattern dispensed by cylindrical tip has enhanced printing accuracy and pattern fidelity when compared with the pattern from conical tip. A glass flip test determined a processing window of 1-2 h after composite ink preparation. Overall, laponite/ADA-GEL hydrogel composites are confirmed as promising inks for 3D bioprinting.
Lab on a chip, 2017
3D printed biomaterials with spatial and temporal functionality could enable interfacial manipulation of fluid flows and motile cells. However, such dynamic biomaterials are challenging to implement since they must be responsive to multiple, biocompatible stimuli. Here, we show stereolithographic printing of hydrogels using noncovalent (ionic) crosslinking, which enables reversible patterning with controlled degradation. We demonstrate this approach using sodium alginate, photoacid generators and various combinations of divalent cation salts, which can be used to tune the hydrogel degradation kinetics, pattern fidelity, and mechanical properties. This approach is first utilized to template perfusable microfluidic channels within a second encapsulating hydrogel for T-junction and gradient devices. The presence and degradation of printed alginate microstructures were further verified to have minimal toxicity on epithelial cells. Degradable alginate barriers were used to direct collect...
Hydrogels—A Promising Materials for 3D Printing Technology
Gels
Hydrogels are a promising material for a variety of applications after appropriate functional and structural design, which alters the physicochemical properties and cell signaling pathways of the hydrogels. Over the past few decades, considerable scientific research has made breakthroughs in a variety of applications such as pharmaceuticals, biotechnology, agriculture, biosensors, bioseparation, defense, and cosmetics. In the present review, different classifications of hydrogels and their limitations have been discussed. In addition, techniques involved in improving the physical, mechanical, and biological properties of hydrogels by admixing various organic and inorganic materials are explored. Future 3D printing technology will substantially advance the ability to pattern molecules, cells, and organs. With significant potential for producing living tissue structures or organs, hydrogels can successfully print mammalian cells and retain their functionalities. Furthermore, recent ad...