On the blow‐up criterion of 3D Navier‐Stokes equation in (original) (raw)

Some remarks on the paper “On the blow up criterion of 3D Navier–Stokes equations” by J. Benameur

paulo Zingano

Comptes Rendus Mathematique, 2014

View PDFchevron_right

A Beale–Kato–Majda blow-up criterion for the 3-D compressible Navier–Stokes equations

Zhifei Zhang

Journal de Mathématiques Pures et Appliquées, 2011

View PDFchevron_right

Lower bound on blow up solutions of the three-dimensional Navier Stokes equations in homogeneous Sobolev spaces

Ricardo Parreira

View PDFchevron_right

Existence, uniqueness and blow-up of solutions for the 3D Navier–Stokes equations in homogeneous Sobolev–Gevrey spaces

Pablo Braz e Silva

Computational & Applied Mathematics, 2020

View PDFchevron_right

Blowup criterion for Navier–Stokes equation in critical Besov space with spatial dimensions d ≥ 4

Baoxiang Wang

Annales de l'Institut Henri Poincaré C, Analyse non linéaire, 2019

View PDFchevron_right

Properties at potential blow-up times for Navier-Stokes

paulo Zingano

Boletim da Sociedade Paranaense de Matemática, 2016

View PDFchevron_right

The Navier-Stokes equations for Incompressible Flows: solution properties at potential blow-up times

paulo Zingano

2015

View PDFchevron_right

A Certain Necessary Condition of Potential Blow up for Navier-Stokes Equations

G. Seregin

Communications in Mathematical Physics, 2012

View PDFchevron_right

Nonexistence of locally self-similar blow-up for the 3D incompressible Navier-Stokes equations

Thomas Hou

Discrete and Continuous Dynamical Systems, 2007

View PDFchevron_right

Mathematical Theory of Incompressible Flows: Local Existence, Uniqueness, and Blow-Up of Solutions in Sobolev–Gevrey Spaces

Ezequiel Barbosa

Current Trends in Mathematical Analysis and Its Interdisciplinary Applications, 2019

View PDFchevron_right

No Finite Time Blowup for 3D Incompressible Navier Stokes Equations via Scaling Invariance

Horizon Research Publishing(HRPUB) Kevin Nelson

Mathematics and Statistics, 2021

View PDFchevron_right

No Finite Time Blowup for Incompressible Navier Stokes Equations via Scaling Invariance a Preprint

Terry Moschandreou

2021

View PDFchevron_right

On the Blow-up criterion of Navier-Stokes equation associated with the Weinstein operator

youssef bettaibi

2021

View PDFchevron_right

No Finite Time Blowup for Incompressible Navier Stokes Equations via Scaling Invariance

Terry Moschandreou

arXiv (Cornell University), 2020

View PDFchevron_right

3-D incompressible Navier-Stokes equations: Complex blow-up and related real flows

Pierluigi Maponi

2020

View PDFchevron_right

Blowup of smooth solutions to the compressible Navier-Stokes equation with compact density

Ольга Розанова

Communications on Pure and Applied Mathematics, 1998

View PDFchevron_right

Nonexistence of Local Self-Similar Blow-up for the 3D Incompressible Navier-Stokes Equations

Thomas Hou

View PDFchevron_right

Regularity Criteria in Weak L3 for 3D Incompressible Navier-Stokes Equations

Yuwen Luo

Funkcialaj Ekvacioj, 2015

View PDFchevron_right

Incompressible Navier Stokes Equations

Terry Moschandreou

arXiv: Analysis of PDEs, 2020

View PDFchevron_right

Blowup of solutions for the compressible Navier–Stokes equations with density-dependent viscosity coefficients

XIAODING SHI

Nonlinear Analysis: Theory, Methods & Applications, 2013

View PDFchevron_right

Finite Time Blow Up for a Navier-Stokes Like Equation

Stephen Montgomery-smith

Proceedings of the American Mathematical Society, 2001

View PDFchevron_right

Characterisation of the pressure term in the incompressible Navier–Stokes equations on the whole space

Pedro Dalgo

Discrete & Continuous Dynamical Systems - S, 2018

View PDFchevron_right

Pressure Regularity Criterion for the Three-dimensional Navier-Stokes Equations in Infinite Channel

Edriss Titi

2007

View PDFchevron_right

Blowup vs Illposedness of Smooth Solutions of the Incompressible Euler/Navier-Stokes Equations

Johan Hoffman

2008

View PDFchevron_right

On the ill-posedness of the compressible Navier-Stokes equations in the critical Besov spaces

Zhifei Zhang

View PDFchevron_right

Analyticity and Decay Estimates of the Navier–Stokes Equations in Critical Besov Spaces

Animikh Biswas

Archive for Rational Mechanics and Analysis, 2012

View PDFchevron_right

Blow-up or no blow-up? A unified computational and analytic approach to 3D incompressible Euler and Navier–Stokes equations

Thomas Hou

Acta Numerica, 2009

View PDFchevron_right

On uniqueness of weak solutions of incompressible Navier-Stokes equations in 3-dimensional case

Kamal N Soltanov

arXiv: Analysis of PDEs, 2015

View PDFchevron_right

On the interior regularity criteria of the 3-D Navier-Stokes equations involving two velocity components

Zhifei Zhang

View PDFchevron_right

On uniqueness of weak solutions of the incompressible Navier-Stokes equations in 3-dimensional case

Kamal N Soltanov

2015

View PDFchevron_right