Draft Genome Sequences of Lactobacillus salivarius A3iob and Lactobacillus johnsonii CRL1647, Novel Potential Probiotic Strains for Honeybees (Apis mellifera L.) (original) (raw)
Related papers
Microorganisms
Apilactobacillus spp. are classified as obligate fructophilic lactic acid bacteria (FLAB) that inhabit fructose-rich niches such as honeybee gut. Lactic acid bacteria are an important component of the gut microbiome and play a crucial role in maintaining gut health. In this study, a new FLAB strain HBW1, capable of producing glucan-type exopolysaccharide, was isolated from giant honeybee (Apis dorsata) gut and subjected to whole genome sequencing (WHS) to determine its health-beneficial traits. The genome size of the isolate was 1.49 Mb with a GC content of 37.2%. For species level identity, 16S rDNA sequence similarity, genome to genome distance calculator (dDDH), and average nucleotide identity (ANI) values were calculated. Phylogenetic analysis showed that the isolate HBW1 belongs to the Apilactobacillus genus. The dDDH and ANI values in comparison with closely clustered Apilactobacillus kunkeei species were 52% and 93.10%, respectively. Based on these values, we concluded that H...
G3 Genes|Genomes|Genetics
Lactobacillaceae are an important family of lactic acid bacteria that play key roles in the gut microbiome of many animal species. In the honey bee (Apis mellifera) gut microbiome, many species of Lactobacillaceae are found, and there is functionally important strain-level variation in the bacteria. In this study, we completed whole genome sequencing of three unique Lactobacillaceae isolates collected from hives in Virginia, USA. Using 107 genomes of known bee-associated Lactobacillaceae and Limosilactobacillus reuteri as an outgroup, the phylogenetics of the three isolates was assessed, and these isolates were identified as novel strains of Apilactobacillus kunkeei, Lactobacillus kullabergensis and Bombilactobacillus mellis. Genome rearrangements, COG categories and potential prophage regions were identified across the three novel strains. The new A. kunkeei strain was enriched in genes related to replication, recombination and repair, the L. kullabergensis strain was enriched for ...
G3 Genes|Genomes|Genetics
Lactobacillaceae are an important family of lactic acid bacteria that play key roles in the gut microbiome of many animal species. In the honey bee (Apis mellifera) gut microbiome, many species of Lactobacillaceae are found, and there is functionally important strain-level variation in the bacteria. In this study, we completed whole-genome sequencing of 3 unique Lactobacillaceae isolates collected from hives in Virginia, USA. Using 107 genomes of known bee-associated Lactobacillaceae and Limosilactobacillus reuteri as an outgroup, the phylogenetics of the 3 isolates was assessed, and these isolates were identified as novel strains of Apilactobacillus kunkeei, Lactobacillus kullabergensis, and Bombilactobacillus mellis. Genome rearrangements, conserved orthologous genes (COG) categories and potential prophage regions were identified across the 3 novel strains. The new A. kunkeei strain was enriched in genes related to replication, recombination and repair, the L. kullabergensis strai...
Insects
A Lactobacillus delbrueckii ssp. lactis strain named A4, isolated from the gut of an Armenian honeybee, was subjected to a probiogenomic characterization because of its unusual origin. A whole-genome sequencing was performed, and the bioinformatic analysis of its genome revealed a reduction in the genome size and the number of the genes—a process typical for the adaptation to endosymbiotic conditions. Further analysis of the genome revealed that Lactobacillus delbrueckii ssp. lactis strain named A4 could play the role of a probiotic endosymbiont because of the presence of intact genetic sequences determining antioxidant properties, exopolysaccharides synthesis, adhesion properties, and biofilm formation, as well as an antagonistic activity against some pathogens which is not due to pH or bacteriocins production. Additionally, the genomic analysis revealed significant potential for stress tolerance, such as extreme pH, osmotic stress, and high temperature. To our knowledge, this is t...
Journal of Advances in Microbiology, 2018
The objective of this work was to isolate, identify and characterize lactobacilli strains from the intestinal tract of honey bees as putative probiotics. We obtained eighty-five isolates. At the end of screening based on physiological properties, 17 isolates were pre-selected and their resistance to gastrointestinal stress was evaluated. Twelve (12) with good resistance after 3 h exposure to low pH values (pH2, pH3) were subjected to determination of their in vitro BSH activity. The research of the bsh-A, bsh-B, Bsh1 and Bsh-Lp1 genes encoding the BSH enzyme was also conducted. Four isolates (H46, H82, H21 and H28) were resistant, seven others tolerant (H6, H15, H47, H24, H67, H44, H80) and only one was sensitive (H63) to oxgall bile salt. Determination of BSH activity revealed that all strains hydrolyze bile salts, with a preference for oxgall as opposed to Original Research Article
Probiotic capability of novel lactic acid bacteria isolated from worker honey bees gut microbiota
FEMS Microbiology Letters, 2021
The study aimed to evaluate the probiotic and safety properties of lactic acid bacterial (LAB) strains isolated from the gut microbiota of honey bee Apis mellifera L., since this source remains a promising reservoir of microbial diversity. A total of five bacterial isolates were molecularly identified using 16S rRNA gene sequencing as Enterococcus faecalis-HBE1, Lactobacillus brevis-HBE2, Enterococcus faecalis-HBE3, Enterococcus faecalis-HBE4 and Lactobacillus casei-HBE5. Gut tolerance conditions (low pH and bile salt) were evaluated. Exopolysaccharides (EPS) production, hemolytic, antioxidant activity, resistance toward antibiotics and technological characteristics (starter activity, pH and proteolysis) were examined. The five isolates showed a high survival rate (>95%), under gastrointestinal tract conditions indicating excellent potential for application as probiotics. The isolates showed no hemolytic activities and good acidification rates in the range of pH 4.6–4.98 after in...
Microorganisms
Honeybees play a vital role in the ecological environment and agricultural economy. Increasing evidence shows that the gut microbiome greatly influences the host’s health. Therefore, a thorough understanding of gut bacteria composition can lead to the development of probiotics specific for each development stage of honeybees. In this study, the gut microbiota at different developmental stages (larvae, pupae, and adults) of the honeybees Apis cerana in Hanoi, Vietnam, was assessed by sequencing the V3–V4 region in the 16S rRNA gene using the Illumina Miseq platform. The results indicated that the richness and diversity of the gut microbiota varied over the investigated stages of A. cenara. All three bee groups showed relative abundance at both phylum and family levels. In larvae, Firmicutes were the most predominant (81.55%); however, they decreased significantly along with the bee development (33.7% in pupae and 10.3% in adults) in favor of Proteobacteria. In the gut of adult bees, ...
Apidologie
This is the first assay that describes the isolation and identification of strains and species of Lactobacillus from the honey stomach of the Asiatic giant honeybee, Apis dorsata. Samples of honeybees were collected from A. dorsata colonies in different bee trees, and Lactobacillus was isolated from honey stomachs using selective media. The isolates were Gram-stained and tested for catalase reaction. The 16S rRNA genes from extracted DNA of bacterial colonies were amplified with polymerase chain reaction using lactobacilli genus primers (27F and 1492R). All bacterial 16S rRNA genes were sequenced and deposited in GenBank. The 34 isolated strains yielded three distinct rRNA sequences of 15 different strains. Lactobacillus sequences isolated from the bees' honey stomachs were comprised of Lactobacillus kunkeei related-sequences (56%) with other abundant sequences being related to other Lactobacillus sp. (38%) and Lactobacillus vermiform (6%). These strains can be good candidates for potential application as probiotics in honeybees and also as natural food preservatives, which, in turn, may be useful in the food industry.