Insights into Surface Treatment Methods of Titanium Dental Implants (original) (raw)
Related papers
Surface Modifications and Their Effects on Titanium Dental Implants
Biomed Research International, 2015
This review covers several basic methodologies of surface treatment and their effects on titanium (Ti) implants. The importance of each treatment and its effects will be discussed in detail in order to compare their effectiveness in promoting osseointegration. Published literature for the last 18 years was selected with the use of keywords like titanium dental implant, surface roughness, coating, and osseointegration. Significant surface roughness played an important role in providing effective surface for bone implant contact, cell proliferation, and removal torque, despite having good mechanical properties. Overall, published studies indicated that an acid etched surface-modified and a coating application on commercial pure titanium implant was most preferable in producing the good surface roughness. Thus, a combination of a good surface roughness and mechanical properties of titanium could lead to successful dental implants.
Surface treatments of titanium dental implants for rapid osseointegration
Dental Materials, 2007
d e n t a l m a t e r i a l s 2 3 ( 2 0 0 7 ) 844-854 a v a i l a b l e a t w w w . s c i e n c e d i r e c t . c o m j o u r n a l h o m e p a g e : w w w . i n t l . e l s e v i e r h e a l t h . c o m / j o u r n a l s / d e m a Dental implants Surface roughness Nano-sized topography Biomimetic calcium phosphate coating a b s t r a c t
Surface Modification of Titanium Dental Implants: A Review
Journal of Nepalese Prosthodontic Society, 2018
Osseointegration of titanium dental implants is the most important clinical parameter for an implant to be successful. One of most biocompatible material, titanium can be made to affix fast on to host bone via various modification of its surface. Machined and smooth titanium implant osseointegrate into living bone tissue but with a roughened surface, this is much more predictable as well as promising clinically. Surface modification allows for an increase in the surface area on to which the osteoblasts easily start laying bone. So, there have been various methods to roughen the surface of titanium implants. The article describes various methods used for modifying the surfaces of dental implants, giving a note on their clinical efficacy as well as advantages and disadvantages of these methods.
Advances in surfaces and osseointegration in implantology. Biomimetic surfaces
Medicina Oral Patología Oral y Cirugia Bucal, 2015
The present work is a revision of the processes occurring in osseointegration of titanium dental implants according to different types of surfaces-namely, polished surfaces, rough surfaces obtained from subtraction methods, as well as the new hydroxyapatite biomimetic surfaces obtained from thermochemical processes. Hydroxyapatite's high plasma-projection temperatures have proven to prevent the formation of crystalline apatite on the titanium dental implant, but lead to the formation of amorphous calcium phosphate (i.e., with no crystal structure) instead. This layer produce some osseointegration yet the calcium phosphate layer will eventually dissolve and leave a gap between the bone and the dental implant, thus leading to osseointegration failure due to bacterial colonization. A new surface-recently obtained by thermochemical processes-produces, by crystallization, a layer of apatite with the same mineral content as human bone that is chemically bonded to the titanium surface. Osseointegration speed was tested by means of minipigs, showing bone formation after 3 to 4 weeks, with the security that a dental implant can be loaded. This surface can be an excellent candidate for immediate or early loading procedures.
Mineralization of Titanium Surfaces: Biomimetic Implants
Materials
The surface modification by the formation of apatitic compounds, such as hydroxyapatite, improves biological fixation implants at an early stage after implantation. The structure, which is identical to mineral content of human bone, has the potential to be osteoinductive and/or osteoconductive materials. These calcium phosphates provoke the action of the cell signals that interact with the surface after implantation in order to quickly regenerate bone in contact with dental implants with mineral coating. A new generation of calcium phosphate coatings applied on the titanium surfaces of dental implants using laser, plasma-sprayed, laser-ablation, or electrochemical deposition processes produces that response. However, these modifications produce failures and bad responses in long-term behavior. Calcium phosphates films result in heterogeneous degradation due to the lack of crystallinity of the phosphates with a fast dissolution; conversely, the film presents cracks, which produce fra...
Bio-Functionalization of Titanium Surfaces for Dental Implants
MATERIALS TRANSACTIONS, 2002
Since dental implants are used in contact with many different tissues, it is necessary to have optimum surface compatibility with the host bone tissues and soft tissues. Furthermore, dental implant surfaces exposed to the oral cavity must remain plaque-free. Such materials can be created under well-controlled conditions by modifying the surfaces of metals that contact those tissues. "Tissue-compatible implants," which are compatible with all host tissues, must integrate with bone tissue, easily form hemidesmosomes, and prevent bacterial adhesion. This research was aimed at developing such tissue-compatible implants by modifying titanium surfaces using a dry process for closely adhering to the titanium substrate and ensuring good wear resistance. The process includes ion beam dynamic mixing (thin calcium phosphates), ion implantation, titania spraying, ion plating and ion beam mixing. At the bone tissue/implant interface, a thin calcium phosphate coating and rapid heating with infrared radiation was effective in controlling the dissolution without cracking the coating. This thin calcium phosphate coating may directly promote osteogenisis, but also enable immobilization of functional proteins or drugs such as bisphosphonate for dug delivery system. At the oral fluid/implant interface, an alumina coating and F + -implantation were responsible for inhibiting the adhesion of microbial plaque. In conclusion, dry-process surface modification is useful in controlling the physicochemical nature of surfaces, including the surface energy and the surface electrical charge, and in developing tissue-compatible implants.
Characterization of Titanium Surface Modification Strategies for Osseointegration Enhancement
Metals, 2021
As biocompatible metallic materials, titanium and its alloys have been widely used in the orthopedic field due to their superior strength, low density, and ease of processing. However, further improvement in biological response is still required for rapid osseointegration. Here, various Ti surface-treatment technologies were applied: hydroxyapatite blasting, sand blasting and acid etching, anodic oxidation, and micro-arc oxidation. The surface characteristics of specimens subjected to these techniques were analyzed in terms of structure, elemental composition, and wettability. The adhesion strength of the coating layer was also assessed for the coated specimens. Biocompatibility was compared via tests of in vitro attachment and proliferation of pre-osteoblast cells.
Journal of applied biomaterials & biomechanics (JABB)
The objective of this preliminary in vitro biological study was to assess the effect of the surface physicochemical and topographical properties of a novel bioactive titanium (BSP) obtained by BioSpark™ treatment. A short-term study was performed to evaluate the bone cell response to BSP and compare it to two commercially available materials: no treated (TI) and chemically etched (ETC) titanium. Material characterization was carried out using scanning electron microscopy (SEM), energy dispersion spectroscopy (EDS), non-contact laser profilometry (LPM), and Thin Film X-ray Diffraction (TF-XRD). Surface analysis showed ETC to have the highest rough surface, followed by TI surface and then BSP being the smoothest material at micro level, but showing a sub micrometer porous structure covered with a "net-like" rough structure. The BSP surface was found to consist of a layer of amorphous calcium and phosphorus and crystalline titanium oxide, not detected in the other materials tested. Indirect biological cytotoxicity studies were performed to determine cell viability following incubation with the eluted extract of the materials. Results indicated no remarkable deterioration in cell viability. In particular, no detectable effect was observed on cellular viability as a result of the chemical interaction between the BSP bioactive surface and the surrounding culture medium. Direct cellular studies showed that the material surface resulted in good cell adhesion on BSP samples. This could be related to both the nano-roughness, and also the crystallinity of the superficial layer of titanium oxide coupled with bioactive Ca-and P-chemical enrichment. The cellular proliferation analysis demonstrated a remarkably higher activity for the cells cultured on BSP, with values significantly higher than the other test materials and the control for all time points. These findings are highly suggestive that the surface properties of the BioSpark™ treated titanium significantly increases cell proliferation rate. In conclusion, this study has demonstrated that the novel bioactive treatment shows potential as a method for improving osteointegration properties of titanium for orthopaedic and dental implants
Different Surface Modifications of Titanium Implant: A Review
Titanium implant surfaces have been modified in various ways to improve biocompatibility and accelerate osseointegration, which results in a shorter edentulous period for a patient. This article reviewed some important modified titanium surfaces. Several methods are widely used to modify the topography or chemistry of titanium surface, including blasting, acid etching, anodic oxidation, fluoride treatment, and calcium phosphate coating. Such modified surfaces demonstrate faster and stronger osseointegration than the turned commercially pure titanium surface. Past literature has revealed most of the surface treatments able to brings a good effect to the dental implants.
Materials
The success of titanium dental implants depends on their osseointegration into the bone, which is determined by the composition and surface properties of the implant in close contact with the bone. There is a wide variety of implants on the market. Is it possible to identify the implant with the best composition and surface topography for optimal osseointegration? To this aim, 13 brands of dental implants from nine distinct manufacturers have been selected and their composition and surface topography determined. The obtained results show differences between these implants, in this case, the Ssk averages of the three measurements performed on each implant were positive, or 0.4 (0.1–0.8), indicating that the roughness of all implants analyzed was primarily textured and not flat. Like Sa, we found the highest Sdr for implants subjected only to sandblasting. In addition, only the ALS-active® implant had a modified microstructure on its surface. However, analysis of the NANOTITE implant ...