Swarm Intelligent in Bio-Inspired Perspective: A Summary (original) (raw)
Related papers
Editorial: Special Issue on Swarm Intelligence Algorithms and Applications
2011
Swarm intelligence (SI) is generally to study the collective behaviour in a decentralized system which is made up by a population of simple individuals interacting locally with one another and with their environment. Such systems are often be found in nature, including bird flocking, ant colonies, particles in cloud, fish schooling, bacteria foraging, animal herding, honey bees, spiders, and sharks, just to name a few.
Introductory Review of Swarm Intelligence Techniques
Studies in computational intelligence, 2022
With the rapid upliftment of technology, there has emerged a dire need to 'fine-tune' or 'optimize' certain processes, software, models or structures, with utmost accuracy and efficiency. Optimization algorithms are preferred over other methods of optimization through experimentation or simulation, for their generic problem-solving abilities and promising efficacy with the least human intervention. In recent times, the inducement of natural phenomena into algorithm design has immensely triggered the efficiency of optimization process for even complex multi-dimensional, non-continuous, non-differentiable and noisy problem search spaces. This chapter deals with the Swarm intelligence (SI) based algorithms or Swarm Optimization Algorithms, which are a subset of the greater Nature Inspired Optimization Algorithms (NIOAs). Swarm intelligence involves the collective study of individuals and their mutual interactions leading to intelligent behavior of the swarm. The chapter presents various population-based SI algorithms, their fundamental structures along with their mathematical models.
International Journal of Advanced Research in Computer Science and Software Engineering
Swarm intelligence is the emergent collective intelligence of groups of simple agents. It belongs to the emerging field of bio-inspired soft computing. It is inspired from the biological entities such as birds, fish, ants, wasps, termites, and bees. Bio-inspired computation is a field of study that is closely related to artificial intelligence. This paper provides a brief introduction to swarm intelligence.
Nature Inspired Swarm Intelligence and Its Applications
In 1989 Gerardo Beni and Jing Wang first proposed the name -Swarm Intelligence‖ in their paper -Swarm Intelligence in Cellular Robotic Systems‖. Some remarkable observations of different researchers are studied in this paper, like the proximity principle, the quality principle, the principle of diverse response, the principle of stability, the principle of adaptability. To enhance the capabilities of robot and different systems, researchers started to exploit the behavior of natural systems. Swarm groups are governed by three rules, move in the same direction as your neighbor, remain close to your neighbor, and avoid collision with your neighbor .Characteristics of swarm groups are emergence and stigmergy. Different insects like ants, wasps, termites carry out a work locally for global goal with sufficient flexibility as they are not controlled centrally. In this paper the existing research works are analysed to show the behavior in social insects by using self-organization, positive feedback, negative feedback, amplification of fluctuation, multiple interactions. It has also been observed that these insects are almost blind and memoryless, still they communicate indirectly among themselves for stigmergic effect by using pheromone. Implementation of swarm intelligence in robotics i.e., swarm robots are narrated. The limitations of swarm robots as well as factors behind the success of swarm robotics have also been encompassed. Finally authors focus on swarm robots applications in telecommunication fields, civil engineering and digital image processing.
Swarm Intelligence: Past, Present and Future
Soft Computing, 2017
Many optimization problems in science and engineering are challenging to solve, and the current trend is to use swarm intelligence (SI) and SI-based algorithms to tackle such challenging problems. Some significant developments have been made in recent years, though there are still many open problems in this area. This paper provides a short but timely analysis about SI-based algorithms and their links with self-organization. Different characteristics and properties are analyzed here from both mathematical and qualitative perspectives. Future research directions are outlined and open questions are also highlighted.
Overview of Algorithms for Swarm Intelligence
Computational Collective Intelligence. Technologies and Applications, 2011
Swarm intelligence (SI) is based on collective behavior of selforganized systems. Typical swarm intelligence schemes include Particle Swarm Optimization (PSO), Ant Colony System (ACS), Stochastic Diffusion Search (SDS), Bacteria Foraging (BF), the Artificial Bee Colony (ABC), and so on. Besides the applications to conventional optimization problems, SI can be used in controlling robots and unmanned vehicles, predicting social behaviors, enhancing the telecommunication and computer networks, etc. Indeed, the use of swarm optimization can be applied to a variety of fields in engineering and social sciences. In this paper, we review some popular algorithms in the field of swarm intelligence for problems of optimization. The overview and experiments of PSO, ACS, and ABC are given. Enhanced versions of these are also introduced. In addition, some comparisons are made between these algorithms.
Swarm Intelligence: State of Art
2019
The paper explores Swarm Optimization and its application on different field. Here, an attempt has been made to achieve the inline relationship between the Swarm Optimization and Genetic Algorithm. We have worked to solve the problems related to optimization using those various algorithms. In this paper, we have provided solution to minimize the population of different colonies especially using cost functions.