Cu (II) and Ni (II) Complexes of Schiff Base: Synthesis, Characterization and Antibacterial Activity (original) (raw)

SYNTHESIS, SPECTRAL CHARACTERIZATION AND ANTIMICROBIAL ACTIVITIES OF Ni(II) AND Cu(II) SCHIFF BASE COMPLEXES

2018

Ni(II) and Cu(II) mono nuclear metal complexes of symmetrical Schiff-base ligands derived from 4,6-diacetyl resorcinol and 2-aminophenol or 4-nitro-2-aminophenol were synthesized. The structure of Schiff-base ligands and their metal complexes were characterized by elemental analysis, H &CNMR, electronic spectroscopy, FT IR, mass, magnetic susceptibility and conductance measurements. The free ligand being tetradentate in nature coordinates through its two nitrogen donars and two oxygen donars in equatorial position, the ligand act as dianionictetradentatedioxadiaza moiety. Both the ligands and the complexes were screened for their antimicrobial activities against Gram positive, Gram negative bacteria and antifungal activities against canditaalbicans.

Synthesis and Characterization with Antimicrobial activity of Cu(II), Ni(II) and Zn(II) metal complexes of Schiff base derived from o-aminophenol/ethylenediamine and Cinnamaldehyde

Metal complexes of Mn(II), Fe(II), Co(II) and Cd(II) ions with Schiff base ligand 4-{(pyridin-2-ylimino)methyl}phenol derived from condensation of 2-amino pyridine with 4hydroxybenzaldehyde was prepared. The ligand and complexes were isolated from the reaction in the solid form and characterized by conductivity, magnetic moment, TLC, IR, UV-Visible, thermal analysis and some physical measurements. During complexation reaction with transition metal ions Schiff base act as a deprotonated tridentate ligand and IR spectra showed that N and O atoms are coordinated to the central metal atom. The observed values confirmed that the complexes have octahedral geometry. The Schiff base and its metal complexes have been found to have moderate to strong antibacterial activity.

Physiochemical and Antibacterial Activity Investigation on Noble Schiff Base Cu(II) Complex

American Journal of Heterocyclic Chemistry, 2017

Schiff base ligand and its Cu(II) complex had been synthesized by the condensation reaction of isatin with amino acids (cysteine / glycine / leucine / alanine). The Structure and spectral properties of ligand and complex were confirmed by UV, FT-IR and some physiochemical measurements. The spectral properties showed that it was a distorted tetrahedral geometry with a tridentate ligand and chloride ion. IR spectral studies show the binding sites of the Schiff base ligand with the metal ion. Molar conductance data and magnetic susceptibility measurements give evidence for monomeric and non-electrolytic nature of the complexes. The Schiff base Cu(II) complex was subjected to antimicrobial studies screened by employing the Disc Diffusion method. All the synthesized complexes showed strong antibacterial activity.

Physical and Spectral Characterization of Ni (II) Cu(II) Co(II) and Cd(II) Complexes with Schiff Base of Salicylaldehyde and 2-Aminopyridine Towards Potential Microbial Application

American Journal of Applied Chemistry, 2018

A Schiff base (SB) is derived from salicylaldehyde and 2-aminopyridine. The transition metal complexes of N i(II), Cu (II), Co and Cd (II) metal ions were prepared with this Schiff base (SB), which were used as ligand. Several physical tools, in particular; elemental analysis, molar conductivity, magnetic susceptibility, infrared spectroscopy (IR), electronic absorption spectroscopy (ESR) to investigate the chemical structure of the prepared transition metal complexes. The elemental analysis data shows the formation of 1:2 [M:2L] complex of the formula of M 2+ L 2 , where M 2+ =Ni(II), Cu(II), Co(II), Cd(II) and L = Schiff base (SB). The molar conductance (conductivity) measurements were revealed that all the complexes are nonelectrolyte in nature. The infrared (IR) spectral studies indicated the binding sites of the Schiff base ligand with the transition metal ions. The magnetic susceptibility measurements and electronic spectral results supported the predicted coordination geometry of the complexes and magnetic properties (para or dia-magnetic nature) of the complexes. The Ni(II), Cu(II), Co(II) ion forms high spin tetrahedral geometry, whereas Cd(II) ion forms low spin tetrahedral structure. The free Schiff base and its complexes have been tested for their antimicrobial activities against four human pathogenic (two gram-positive and two gramnegative) bacteria. The obtained results showed that only Cu(II) complex exhibited strong activity toward human pathogenic gram positive and gram negative bacteria whereas the Ni(II), Co(II) and Cd(II) complexes showed week to moderate antimicrobial activity compared with standard Kanamycin and Ampicillin.

Some new Cu(II) complexes containing an ON donor Schiff base: Synthesis, characterization and antibacterial activity

Polyhedron, 2011

Coordination compounds of Cu(II), VO(II), Ni(II), and Mn(II) with the Schiff base obtained through the condensation of 4-amino-2,3-dimethyl-1-phenyl-3-pyrazolin-5-one with 3-formyl-6-methyl-chromone were synthesized. The characterization of the newly formed compounds was done by 1 H NMR, UV-Vis, IR, ESR spectroscopy, elemental analysis and molar electric conductibility. The crystal structure of 1-phenyl-2,3-dimethyl-4-(N-3-formyl-6-methyl-chromone)-3-pyrazolin-5-one (HL) has been determined by X-ray diffraction studies, as well as the one of its copper(II) complex [CuL(OAc)]ÁCH 3 OH which contains an anionic ligand and an acetate in the coordination sphere of the metal. The single crystal X-ray structure for (HL) was analyzed for its various weak H-bonding and dimeric association.

Preparation, Physical Characterization and Antibacterial Activity of Ni (II), Cu (II), Co (II), Cd (II), Zn (II) and Cr (III) Schiff Base Complex Compounds

Science Journal of Chemistry, 2018

A Schiff base (SB) derived from p-hydroxy benzaldehyde and 4-aminobenzoic acid. The transition metal complexes of Ni (II), Cu (II), Co (II), Cd (II), Zn (II) and Cr (III) were prepared separately with the Schiff base (SB), which were used as ligand. Several physical tools, in particular; elemental analysis, molar conductivity, magnetic susceptibility, infrared spectroscopy (IR), electronic absorption spectroscopy (ESR) to investigate the chemical structure of the prepared transition metal complexes. The elemental analysis data show the formation of 1:2 [M 1 :2L] and 1:3 [M 2 :3L] complexes of the formula of M 2+ L 2 and M 3+ L 3 , respectively where M 2+ =Ni (II), Cu (II), Co (II), Cd (II), Zn (II) and M 3+ = Cr (III) and L = Schiff base (SB). The molar conductance (conductivity) measurements were revealed that all the complexes are nonelectrolyte in nature. The infrared (IR) spectral studies indicated the binding sites of the Schiff base ligand with the transition metal ions. The magnetic susceptibility measurements and electronic spectral results supported the predicted coordination geometry of the complexes and magnetic properties (para or dia-magnetic nature) of the complex compounds. The free Schiff base and its complexes have been tested for their antimicrobial activities against several human pathogenic (two gram-positive and two gram-negative) bacteria. The obtained results showed that the complex compounds exhibit moderate to strong antimicrobial activity compared with kanamycin and ampicillin.

Synthesis, characterization, thermal, theoretical and antimicrobial studies of Schiff base ligand and its Co(II) and Cu(II) complexes

Journal of the Serbian Chemical Society, 2019

A Schiff base ligand L was synthesized by condensation of 1,2-diaminoethane with creatinine. The reaction of the ligand with metal chloride salt gives Co(II) and Cu(II) complexes. The synthesized ligand and its metal complexes were characterized by elemental analysis, FT-IR, NMR, UV?Vis, conductivity and magnetic susceptibility measurements as well as thermal analyses. Based on spectral data, tetrahedral geometries have been proposed for the Co(II) and Cu(II) complexes. The molar conductivity data show that the complexes are non-electrolytic in nature. In DFT studies, the geometry of the Schiff base ligand and its Co(II) and Cu(II) complexes were fully optimized using the B3LYP functional together with 6-31g(d,p) and LANL2DZ basis sets. The ligand and its metal complexes were tested against four bacterial species and two fungal species. The results revealed that the metal complexes are more potent against the microbes than the parent ligand.