Therapeutic Effects and Safe Uses of Plant-Derived Polyphenolic Compounds in Cardiovascular Diseases: A Review (original) (raw)
Related papers
Plant Polyphenols and Their Potential Benefits on Cardiovascular Health: A Review
Molecules
Fruits, vegetables, and other food items contain phytochemicals or secondary metabolites which may be considered non-essential nutrients but have medicinal importance. These dietary phytochemicals exhibit chemopreventive and therapeutic effects against numerous diseases. Polyphenols are secondary metabolites found in vegetables, fruits, and grains. These compounds exhibit several health benefits such as immune modulators, vasodilators, and antioxidants. This review focuses on recent studies on using dietary polyphenols to treat cardiovascular disorders, atherosclerosis, and vascular endothelium deficits. We focus on exploring the safety of highly effective polyphenols to ensure their maximum impact on cardiac abnormalities and discuss recent epidemiological evidence and intervention trials related to these properties. Kaempferol, quercetin, and resveratrol prevent oxidative stress by regulating proteins that induce oxidation in heart tissues. In addition, polyphenols modulate the to...
Polyphenols as potential therapeutical agents against cardiovascular diseases
Pharmacological reports : PR, 2005
Increasing evidence suggests that polyphenols from fruits, vegetables and beverages such as wine and tea may exert protective effects on the cardiovascular system. Indeed, research in the field of polyphenols points out their antioxidant and free radical scavenging properties, leading to lower low-density lipoprotein (LDL) oxidation and platelet aggregation. These compounds are also able to modulate the generation of nitric oxide (NO) from vascular endothelium and to interfere with the mechanisms leading to inflammation and endothelial apoptosis, contributing to the prevention of the endothelial dysfunction, known to play a central role in the pathogenesis of cardiovascular diseases. This article reviews the potential targets of polyphenols involved in the complex pathophysiological events occurring in cardiovascular diseases, such as hypertension, atherosclerosis and stroke.
Beneficial effects of polyphenols on cardiovascular disease
Pharmacological Research, 2013
In recent years, numerous studies have demonstrated the health benefits of polyphenols, and special attention has been paid to their beneficial effects against cardiovascular disease, the leading cause of death in the world today. Polyphenols present vasodilator effects and are able to improve lipid profiles and attenuate the oxidation of low density lipoproteins. In addition, they present clear anti-inflammatory effects and can modulate apoptotic processes in the vascular endothelium. It has been suggested that most of these effects are a consequence of the antioxidant properties of polyphenols, but this idea is not completely accepted, and many other mechanisms have been proposed recently to explain the health effects of these compounds. In fact, different signaling pathways have been linked to polyphenols. This review brings together some recent studies which establish the beneficial properties of polyphenols for cardiovascular disease and analyzes the mechanisms involved in these properties.
Pure polyphenols applications for cardiac health and disease
Current pharmaceutical design, 2018
Polyphenols are natural compounds present in fruits and vegetables that can exert beneficial effects on human health and notably, on the cardiovascular system. Some of these compounds showed significant protective activities toward atherosclerosis, hypertension, myocardial infarction, anthracyclin-induced cardiomyopathy, angiogenesis as well as heart failure. Polyphenols can act through systemic effects as well as through modulation of signaling pathways such as redox signaling, inflammation, autophagy and cell death in the heart and vessels. These effects can be mediated by changes in expression level and by post-translational modifications of proteins (e.g. Stat1, CaMKII, Sirtuins, BCL-2 family members, PDEs, TRF2, eNOS and SOD). This non-comprehensive short review aims to summarize recent knowledge on the main pharmacological effects and mechanisms of cardioprotection of pure polyphenols, using different approaches such as cell culture, animal models and human studies.
Cardioprotection by Bioactive Polyphenols: A Strategic View
Cardiovascular disease (CVD) remains one causing most mortality worldwide. Common CVD risks include oxidative stress, hyperlipidemia, endothelial dysfunction, thrombosis, hypertension, hyperhomocysteinemia, inflammation, diabetes, obesity, physical inactivity, and genetic factors. Among which, lifestyle changes including diets are modifiable CVD risks, becoming the first line of prevention prior to any medication. In the past decades, the USDA, the American Heart Association, the American Nutrition Association, the Academy of Nutrition and Dietetics, and many other health organizations have launched five colors daily with vegetable and fruit consumption for human health. Lipophilic polyphenols, phytochemicals rich in vegetables and fruits, show classical antioxidation (e.g., radical-scavenging, metal chelating, NOX inhibition, attenuation on mitochondrial respiration, inhibition on xanthine oxidase, and upregulations on endogenous antioxidant enzymes), multiple effects on cell signaling (e.g., AMPK activation, SirT1 activation, eNOS activation, FOXO activation, NFkB inactivation, PI3K/AkT inhibition, mTORC1 inhibition, ERK inhibition, JAK/STAT inhibition, IKK/JNK inhibition, PDE inhibition, α-catenin inactivation, downregulation on TLR expression, ACE inhibition, adiponectin elevation, attenuated ET-1 production, and K+ channel activation), and many other biological actions (e.g., inhibition on α-glucosidase, anticoagulation, upregulation on paraoxonase 1, PAI-1 downregulation, tPA upregulation, epigenetic modulation, and altered gut microbiota). Accordingly, polyphenols multiple-targeting CVD risks and progression (Graphic summary) could offer broad range of cardioprotection from atherosclerosis, hypertrophy, arrhythmia, angina, heart failure, etc.
Molecules, 2021
According to the World Health Organization, cardiovascular diseases are responsible for 31% of global deaths. A reduction in mortality can be achieved by promoting a healthy lifestyle, developing prevention strategies, and developing new therapies. Polyphenols are present in food and drinks such as tea, cocoa, fruits, berries, and vegetables. These compounds have strong antioxidative properties, which might have a cardioprotective effect. The aim of this paper is to examine the potential of polyphenols in cardioprotective use based on in vitro human and rat cardiomyocytes as well as fibroblast research. Based on the papers discussed in this review, polyphenols have the potential for cardioprotective use due to their multilevel points of action which include, among others, anti-inflammatory, antioxidant, antithrombotic, and vasodilatory. Polyphenols may have potential use in new and effective preventions or therapies for cardiovascular diseases, yet more clinical studies are needed.
The role of polyphenols in cardiovascular disease
Medical science monitor : international medical journal of experimental and clinical research, 2010
Epidemiological studies suggest that diets rich in polyphenols may be associated with reduced incidence of cardiovascular disorders (mainly coronary heart disease and myocardial infarction). However, the mechanisms explaining this correlation have not been fully elucidated. Current evidence suggests that polyphenols, acting at the molecular level, improve endothelial function and inhibit platelet aggregation. In view of their antithrombotic, anti-inflammatory, and anti-aggregative properties, these compounds may play a roles in the prevention and treatment of cardiovascular disease.
Molecules, 2020
Polyphenols have recently gained popularity among the general public as products and diets classified as healthy and containing naturally occurring phenols. Many polyphenolic extracts are available on the market as dietary supplements, functional foods, or cosmetics, taking advantage of clients’ desire to live a healthier and longer life. However, due to the difficulty of discovering the in vivo functions of polyphenols, most of the research focuses on in vitro studies. In this review, we focused on the cardioprotective activity of different polyphenols as possible candidates for use in cardiovascular disease therapy and for improving the quality of life of patients. Thus, the studies, which were mainly based on endothelial cells, aortic cells, and some in vivo studies, were analyzed. Based on the reviewed articles, polyphenols have a few points of action, including inhibition of acetylcholinesterase, decrease in reactive oxygen species production and endothelial tube formation, sti...
British journal of pharmacology, 2017
Polyphenols are widely regarded to have a wide range of health-promoting qualities, including beneficial effects on cardiovascular disease. Historically, the benefits have been linked to their well-recognized powerful antioxidant activity. However, the concept that the beneficial effects are attributable to direct antioxidant activity in vivo does not pay sufficient heed to the fact that polyphenols degrade rapidly, are poorly absorbed and rapidly metabolized, resulting in very low bioavailability. This review explores alternative mechanisms by which polyphenols, or their metabolites, exert biological activity via mechanisms that can be activated by physiologically relevant concentrations. Evidence is presented to support the action of phenolic derivatives on receptors and signalling pathways to induce adaptive responses that drive changes in endogenous antioxidant, antiplatelet, vasodilatory and anti-inflammatory effects. The implications are that in vitro antioxidant measures as p...
The Cardiovascular Benefits of Polyphenol Compounds
Advances in Anthropology, 2013
In comparison, polyphenols are one of the most diverse to most other groups of bioactive phytochemicals. Polyphenols can be found in a wide range of foods that are derived from plants. Polyphenols are made up of various subgroups, but it's the phenolics, stillbenes, and flavonoids that engender positive impacts on cardiovascular health. These three phytochemical compounds can reduce cardiovascular conditions such as hypertension and coronary heart disease. Remarkably, polyphenols and its subgroups can be found ubiquitously in most human diets. As a result, many studies have effectively illustrated the positive impacts polyphenols can induce when processed by the human body. Furthermore, research efforts have shown that modern diets and more "traditional" diets have unknowingly promoted the consumption of foods rife with polyphenols. These findings are starting to be incorporated into the public health discipline as a more practical option for more sustainable nutritional interventions. In all, polyphenols can produce a myriad of positive developments on at the micro and macro level.