Effect of probiotics lactobacillus and bifidobacterium on gut-derived lipopolysaccharides and inflammatory cytokines: an in vitro study using a human colonic microbiota model (original) (raw)

Administration of probiotics to healthy volunteers: effects on reactivity of intestinal mucosa and systemic leukocytes

BMC Gastroenterology, 2022

Background: Oral administration of health-promoting bacteria is increasingly used in clinical practise. These bacteria have anti-inflammatory characteristics and modulate the immune system without major reported side effects. The mechanisms of action are not yet fully defined. Our aim was to study systemic effects of probiotics by measurements of leukocytes as well as local effects on rectal mucosal biopsies after adding a standardized inflammatory stimulus in vitro. Methods: Fourteen healthy subjects were randomized to receive 10 10 colony forming units/day orally of the probiotic strain Lactiplantibacillus plantarum 299 (Lp299), n = 7, or Bifidobacterium infantis CURE21 (CURE21), n = 7, for six weeks. Rectal biopsies were taken before and after ingestion of either probiotic strain product, for stimulation in vitro with tumour necrosis factor alpha (TNF-α) at 10 and 100 ng/ml respectively up to 8 h. Blood tests were sampled before and after treatment. Lactate dehydrogenase (LDH) confirmed viable tissue. Results: Composition of the intestinal microbiota was not changed. Systemic leukocytes decreased after administration of CURE21 (P<0.05) and Lp299 (P<0.01). Levels of the pro-inflammatory cytokine IL-6 in rectal mucosa after stimulation with TNF-α were attenuated after ingestion of Lp299. No effect was seen with CURE21. Conclusions: Administration of these probiotic strains to healthy humans show both a systemic and local reduction of inflammatory response by lowering leukocyte counts, and for Lp299 IL-6 levels in rectal mucosa. Probiotics may play an important role in the reduction of inflammatory responses expected after trauma during surgery or after pelvic irradiation.

Multistep mechanism of probiotic bacterium, the effect on innate immune system

Molecular Nutrition & Food Research, 2009

The etiology and pathogenesis of inflammatory bowel disease are still not fully understood. However, evidence from both animal models and clinical observations suggests luminal bacteria as the most probable inducer of this disease. The intestinal bacterial microbiota may be modified by dietary addition of viable probiotic bacteria, thereby constituting an alternative approach to disease prevention and treatment. The aim of this study was to evaluate and compare the effects of two probiotic regiments; Lactobacillus GG and a mixture of Streptococcus thermophilus, Lactobacillus acidophilus, and Bifidobacterium lactis (YO-MIX TM Y 109 FRO 1000) in both normal and trinitrobenzenesulfonic acid colitis-induced rats. Colon morphology and damage were evaluated histologically; colonic tissues were used for mRNA analysis, using real-time PCR. Administration of both probiotics reduced the expression of proinflammatory cytokines tumor necrosis factor-a and IL-6 and increased the expression of mucin 2 in compared with colitis group and reduced the inflammatory response. These results provide additional support for the positive effect of probiotics in the gut and may shed light on the mechanism by which probiotic bacteria exert their action in an animal model.

Comparative effects of six probiotic strains on immune function in vitro

The British journal of nutrition, 2012

There is considerable interest in the strain specificity of immune modulation by probiotics. The present study compared the immunomodulatory properties of six probiotic strains of different species and two genera in a human peripheral blood mononuclear cell (PBMC) model in vitro. Live cells of lactobacilli (Lactobacillus casei Shirota, L. rhamnosus GG, L. plantarum NCIMB 8826 and L. reuteri NCIMB 11951) and bifidobacteria (Bifidobacterium longum SP 07/3 and B. bifidum MF 20/5) were individually incubated with PBMC from seven healthy subjects for 24 h. Probiotic strains increased the proportion of CD69+ on lymphocytes, T cells, T cell subsets and natural killer (NK) cells, and increased the proportion of CD25+, mainly on lymphocytes and NK cells. The effects on activation marker expression did not appear to be strain specific. NK cell activity was significantly increased by all six strains, without any significant difference between strains. Probiotic strains increased production of ...

Immunomodulatory Potentials of Probiotics: A Review

2020

In recent years, research has focused on natural mechanisms for the management, treatment, and curing of human infections and diseases. One of such natural methods is the application of probiotics, which are live microorganisms which when administered in adequate amounts confer a health benefit on the host. The beneficial effects associated with probiotics were originally thought to be a result of improvements in the intestinal microbial balance, however, there are shred evidence that probiotics can also provide benefits by modulating the immune functions. The ability of these probiotics, majorly the Lactobacillus and Bifidobacterium species to boost the immune system is proposed to be a result of their interactions with the cells of the immune system. They have been reported to stimulate various parts of the immune system, through several mechanisms enhancing their functions. It has also been established that the effects of probiotic bacteria may also result from soluble factors fr...

Probiotics as regulators of inflammation: A review

A substantial and increasing body of clinical evidence supports the role of specific strains and mixtures of probiotics in the prevention and treatment of certain diseases. Several general mechanisms of action have been proposed, including supporting repair of hyperpermeable epithelial barriers, interfering with infection by pathogens, and restoring a healthful balance of commensal microbes to affect metabolism. Emerging evidence supports an additional role of probiotics as important modulators of immune system responses, including inflammation, at mucosal surfaces. In particular, by preventing or repairing ‘leaky’ epithelial barriers, probiotics can indirectly affect the inflammatory response by negating the source of pro-inflammatory stimuli associated with low-grade endotoxemia. They also enhance production of short chain fatty acids with anti-inflammatory properties (e.g. butyrate) as well as increase synthesis of antimicrobial peptides that influence inflammation resolution pathways in the mucosa. Furthermore, probiotics and some of their secreted metabolic products can act as ligands for innate immune system receptors, directly influencing key pro-inflammatory pathways. They also stimulate the differentiation and activity of important immune cells (e.g., dendritic cells, T cells), and subsequently increase production of important regulatory cytokines, including interleukin-10 (IL-10) and transforming growth factor-beta (TGF-b). Finally, there are limited but increasing animal studies and clinical trials demonstrating probiotics do affect common biomarkers of inflammation, including C-reactive protein, as well as signs and symptoms of the associated diseases suggesting they can have therapeutic benefit in the treatment of chronic inflammatory disease.

Probiotic Species in the Modulation of Gut Microbiota: An Overview

Probiotics are microbial strains that are beneficial to health, and their potential has recently led to a significant increase in research interest in their use to modulate the gut microbiota. The animal gut is a complex ecosystem of host cells, microbiota, and available nutrients, and the microbiota prevents several degenerative diseases in humans and animals via immunomodulation. The gut microbiota and its influence on human nutrition, metabolism, physiology, and immunity are addressed, and several probiotic species and strains are discussed to improve the understanding of modulation of gut microbiota. This paper provides a broad review of several Lactobacillus spp., Bifidobacterium spp., and other coliform bacteria as the most promising probiotic species and their role in the prevention of degenerative diseases, such as obesity, diabetes, cancer, cardiovascular diseases, malignancy, liver disease, and inflammatory bowel disease. This review also discusses a recent study of Saccharomyces spp. in which inflammation was prevented by promotion of proinflammatory immune function via the production of short-chain fatty acids. A summary of gut microbiota alteration with future perspectives is also provided.

Probiotic Lactobacillus Strains Stimulate the Inflammatory Response and Activate Human Macrophages

Journal of Immunology Research, 2017

Lactobacilli have been shown to promote health functions. In this study, we analyzed the mechanism by which four different strains of probiotics affected innate immunity, such as regulation of ROS, cytokines, phagocytosis, bactericidal activity, signaling by NF-κB pp65, and TLR2 activation. The production of ROS was dependent on the concentration and species of Lactobacillus. The results obtained from the tested strains (Lactobacillus rhamnosus GG, L. rhamnosus KLSD, L. helveticus IMAU70129, and L. casei IMAU60214) showed that strains induced early proinflammatory cytokines such as IL-8,TNF-α, IL-12p70, and IL-6. However, IL-1β expression was induced only by L. helveticus and L. casei strains (after 24 h stimulation). Phagocytosis and bactericidal activity of macrophages against various pathogens, such as S. aureus, S. typhimurium, and E. coli, were increased by pretreatment with Lactobacillus. The nuclear translocation NF-κB pp65 and TLR2-dependent signaling were also increased by ...

Immunomodulatory Effects of Probiotics on Cytokine Profiles

Probiotics confer immunological protection to the host through the regulation, stimulation, and modulation of immune responses. Researchers have shifted their attention to better understand the immunomodulatory effects of probiotics, which have the potential to prevent or alleviate certain pathologies for which proper medical treatment is as yet unavailable. It has been scientifically established that immune cells (T-and B-cells) mediate adaptive immunity and confer immunological protection by developing pathogen-specific memory. However, this review is intended to present the recent studies on immunomodulatory effects of probiotics. In the early section of this review, concepts of probiotics and common probiotic strains are focused on. On a priority basis, the immune system, along with mucosal immunity in the human body, is discussed in this study. It has been summarized that a number of species of Lactobacillus and Bifidobacterium exert vital roles in innate immunity by increasing the cytotoxicity of natural killer cells and phagocytosis of macrophages and mediate adaptive immunity by interacting with enterocytes and dendritic, Th1, Th2, and Treg cells. Finally, immunomodulatory effects of probiotics on proinflammatory and anti-inflammatory cytokine production in different animal models have been extensively reviewed in this paper. Therefore, isolating new probiotic strains and investigating their immunomodulatory effects on cytokine profiles in humans remain a topical issue.

Ameliorative Effect of Probiotic Strains, Lactobacillus Acidophilus and Lactobacillus Bulgaricus Against Acetic Acid-Induced Inflammation in the Mouse Colon

Probiotic bacteria with anti-inflammatory properties have the potential to be of therapeutic benefit in inflammatory bowel diseases. The present study was designed to evaluate the effect of feeding low-fat probiotic yogurt containing L. acidophilus and L. bulgaricus on acetic acid-induced inflammation in mouse colon. Inflammatory model that mimics various features of IBDs was induced by a single application of 100µl of 4.5% acetic acid in Swiss Albino mice. Mice were pretreated orally by 200µl yogurt containing both L. acidophilus and L. bulgaricus for 3 days before induction of inflammation and 200µl yogurt was given orally for a period of 7 days after acetic-acid induction. The body weight, food and water intakes, serum biomarkers, macroscopic and histopathological studies of colon tissues were performed to evaluate the anti-inflammatory effect. Combined administration of both strains prevented the damages of villous and crypts in colon epithelial cells and thus provides unique mucosal protective effects in experimental colitis. In conclusion, feeding low-fat probiotic yogurt containing L. acidophilus and L. bulgaricus prevented or ameliorated the inflammatory conditions that can be beneficial to prevent or lower risks of IBDs and its complications.

Potential Application of Probiotics in the Prevention and Treatment of Inflammatory Bowel Diseases

Ulcers, 2011

Lactic acid bacteria (LAB) represent a heterogeneous group of microorganisms that are naturally present in many foods and possess a wide range of therapeutic properties. The aim of this paper is to present an overview of the current expanding knowledge of the mechanisms by which LAB and other probiotic microorganisms participate in the prevention and treatment of inflammatory bowel diseases. These include changes in the gut microbiota, stimulation of the host immune responses, and reduction of the oxidative stress due to their antioxidant properties. A brief overview of the uses of genetically engineered LAB that produce either antioxidant enzymes (such as catalase and superoxide dismutase) or anti-inflammatory cytokines (such as IL-10) will also be discussed. This paper will show that probiotics should be considered in treatment protocols of IBD since they provide many beneficial effects and can enhance the effectiveness of traditional used medicines.