Validation of Soft Multipin Dry EEG Electrodes (original) (raw)
Related papers
Sensors
One century after the first recording of human electroencephalographic (EEG) signals, EEG has become one of the most used neuroimaging techniques. The medical devices industry is now able to produce small and reliable EEG systems, enabling a wide variety of applications also with no-clinical aims, providing a powerful tool to neuroscientific research. However, these systems still suffer from a critical limitation, consisting in the use of wet electrodes, that are uncomfortable and require expertise to install and time from the user. In this context, dozens of different concepts of EEG dry electrodes have been recently developed, and there is the common opinion that they are reaching traditional wet electrodes quality standards. However, although many papers have tried to validate them in terms of signal quality and usability, a comprehensive comparison of different dry electrode types from multiple points of view is still missing. The present work proposes a comparison of three diff...
Recent technological advances in the field of skin electrodes and on-body sensors indicate a possibility of having an alternative to the traditionally used conductive gel electrodes for measuring electrical signals of the brain (electroencephalogram, EEG). This paper evaluates whether water-based and dry contact electrode solutions can replace the gel ones. The quality of the obtained signal by three headsets, each using 8 electrodes of a different type, is estimated onthe steady state visual evoked potential (SSVEP) brain-computer interface (BCI) use case. The stimuli frequencies in the low (12 to 21Hz) and high (28 to 40Hz) frequency domain were used. Six people, that had different hair length and type, participated in the experiment. SSVEP response in terms of power spectra across different electrodes is compared and the impact of noise on temporal characteristics ofthe response is discussed. For people with shorter hair style the performance of water-based and dry electrodes com...
Multi-Center Evaluation of Gel-Based and Dry Multipin EEG Caps
Sensors
Dry electrodes for electroencephalography (EEG) allow new fields of application, including telemedicine, mobile EEG, emergency EEG, and long-term repetitive measurements for research, neurofeedback, or brain–computer interfaces. Different dry electrode technologies have been proposed and validated in comparison to conventional gel-based electrodes. Most previous studies have been performed at a single center and by single operators. We conducted a multi-center and multi-operator study validating multipin dry electrodes to study the reproducibility and generalizability of their performance in different environments and for different operators. Moreover, we aimed to study the interrelation of operator experience, preparation time, and wearing comfort on the EEG signal quality. EEG acquisitions using dry and gel-based EEG caps were carried out in 6 different countries with 115 volunteers, recording electrode-skin impedances, resting state EEG and evoked activity. The dry cap showed ave...
Review Dry and Non-contact EEG Electrodes for 2010-2021 years
The basis of the work of electroencephalography (EEG) is the registration of electrical impulses from the brain or some of its individual areas using a special sensor/electrode. This method is used for the treatment and diagnosis of various diseases. The use of wet electrodes in this case does not seem viable, for several well-known reasons. As a result of this, a detailed analysis of modern EEG sensors developed over the past few years is carried out, which will allow researchers to choose this type of sensor more carefully and, as a result, conduct their research more competently. Due to the absence of any standards in the production and testing of dry EEG sensors, the main moment of this manuscript is a detailed description of the necessary steps for testing a dry electrode, which will allow researchers to maximize the potential of the sensor in the various type of research.
A Validation of a Prototype Dry Electrode System for Electroencephalography
2011
Current physiologically-driven operator cognitive state assessment technology relies primarily on electroencephalographic (EEG) signals. Traditionally, gel-based electrodes have been used; however, the application of gel-based electrodes on the scalp requires expertise and a considerable amount of preparation time. Additionally, discomfort can occur from the abrasion of the scalp during preparation, and the electrolyte will also begin to dry out over extended periods of time. These drawbacks have hindered the transition of operator state assessment technology into an operational environment. QUASAR, Inc., (San Diego, CA) has developed a prototype dry electrode system for electroencephalography that requires minimal preparation. A comparison of the dry electrode system to traditional wet electrodes was conducted and is presented here. The results show that initially the EEG recorded by the dry electrode system was quite similar to that recorded by the wet electrodes, but the similarity decreased over a testing period of six months. For cognitive state assessment, the dry electrodes were able to achieve classification accuracies within one to two percent of those achieved by the wet electrodes, with no decrease in accuracy over time. The results suggest that the dry electrode system is capable of recording electroencephalographic signals to be used in cognitive state assessment, and aiding in the transition of that technology into an operational environment. Further work should be conducted to improve the reliability of this novel system.
Quality assessment of electroencephalography obtained from a “dry electrode” system
Journal of Neuroscience Methods, 2012
This study examines the difference in application times for routine electroencephalography (EEG) utilizing traditional electrodes and a "dry electrode" headset. The primary outcome measure was the time to interpretable EEG (TIE). A secondary outcome measure of recording quality and interpretability was obtained from EEG sample review by two blinded clinical neurophysiologists. With EEG samples obtained from 10 subjects, the average TIE for the "dry electrode" system was 139 s, and for the conventional recording 873 s (p < 0.001). The results support the hypothesis that such a "dry electrode" system can be applied with more than an 80% reduction in the TIE while still obtaining interpretable EEG.
Comparison of Dry Electrodes for Mobile EEG System
2019
The main objective of this study was to evaluate two types of dry EEG electrode. In the paper, we describe the comparison of two comb electrodes. The first was an electrode based Ag-AgCl alloy and the second was electrode based on a flexible conductive polymer. Testing of these electrodes was performed based on the need to increase convenience when measuring EEG signals while maintaining the same signal characteristics.
Validation of a wireless dry electrode system for electroencephalography
Journal of NeuroEngineering and Rehabilitation, 2015
Background: Electroencephalography (EEG) is a widely used neuroimaging technique with applications in healthcare, research, assessment, treatment, and neurorehabilitation. Conventional EEG systems require extensive setup time, expensive equipment, and expertise to utilize and therefore are often limited to clinical or laboratory settings. Technological advancements have made it possible to develop wireless EEG systems with dry electrodes to reduce many of these barriers. However, due to the lack of homogeneity in hardware, electrode evaluation, and methodological procedures the clinical acceptance of these systems has been limited. Methods: In this investigation the validity of a wireless dry electrode system compared to a conventional wet electrode system was assessed, while addressing methodological limitations. In Experiment 1, the signal output of both EEG systems was examined at Fz, C3, Cz, C4, and Pz using a conductive head model and generated test signals at 2.5 Hz, 10 Hz, and 39 Hz. In Experiment 2, two-minutes of eyes-closed and eyes-open EEG data was recorded simultaneously with both devices from the adjacent electrode sites in a sample of healthy adults. Results: Between group effects and frequency*device and electrode*device interactions were assessed using a mixed ANOVA for the simulated and in vivo signal output, producing no significant effects. Bivariate correlation coefficients were calculated to assess the relationship between electrode pairs during the simultaneous in vivo recordings, indicating a significant positive relationship (all p's < .05) and larger correlation coefficients (r > ± 0.5) between the dry and wet electrode signal amplitude were observed for theta, alpha, beta 1, beta 2, beta 3, and gamma in both the eyes-closed and eyes-open conditions. Conclusions: This report demonstrates preliminary but compelling evidence that EEG data recorded from the wireless dry electrode system is comparable to data recorded from a conventional system. Small correlation values in delta activity were discussed in relation to minor differences in hardware filter settings, variation in electrode placement, and participant artifacts observer during the simultaneous EEG recordings. Study limitations and impact of this research on neurorehabilitation were discussed.
Novel Multipin Electrode Cap System for Dry Electroencephalography
Current usage of electroencephalography (EEG) is limited to laboratory environments. Self-application of a multichannel wet EEG caps is practically impossible, since the application of state-of-the-art wet EEG sensors requires trained laboratory staff. We propose a novel EEG cap system with multipin dry electrodes overcoming this problem. We describe the design of a novel 24-pin dry electrode made from polyurethane and coated with Ag/AgCl. A textile cap system holds 97 of these dry electrodes. An EEG study with 20 volunteers compares the 97-channel dry EEG cap with a conventional 128-channel wet EEG cap for resting state EEG, alpha activity, eye blink artifacts and checkerboard pattern reversal visual evoked potentials. All volunteers report a good cap fit and good wearing comfort. Average impedances are below 150 kX for 92 out of 97 dry electrodes, enabling recording with standard EEG amplifiers. No significant differences are observed between wet and dry power spectral densities for all EEG bands. No significant differences are observed between the wet and dry global field power time courses of visual evoked potentials. The 2D interpolated topographic maps show significant differences of 3.52 and 0.44 % of the map areas for the N75 and N145 VEP components, respectively. For the P100 component, no significant differences are observed. Dry multipin electrodes integrated in a textile EEG cap overcome the principle limitations of wet electrodes, allow rapid application of EEG multichannel caps by non-trained persons, and thus enable new fields of application for multichannel EEG acquisition.