Multiscale core-periphery structure in a global liner shipping network (original) (raw)
Related papers
Measuring the effect of distance on the network topology of the Global Container Shipping Network
Scientific Reports, 2021
This paper examines how spatial distance affects network topology on empirical data concerning the Global Container Shipping Network (GCSN). The GCSN decomposes into 32 multiplex layers, defined at several spatial levels, by successively removing connections of smaller distances. This multilayer decomposition approach allows studying the topological properties of each layer as a function of distance. The analysis provides insights into the hierarchical structure and (importing and exporting) trade functionality of the GCSN, hub connectivity, several topological aspects, and the distinct role of China in the network’s structure. It also shows that bidirectional links decrease with distance, highlighting the importance of asymmetric functionality in carriers’ operations. It further configures six novel clusters of ports concerning their spatial coverage. Finally, it reveals three levels of geographical scale in the structure of GCSN (where the network topology significantly changes): ...
Ports in multi-level maritime networks
HAL (Le Centre pour la Communication Scientifique Directe), 2010
While maritime transport ensures about 90% of world trade volumes, it has not yet attracted as much attention as other transport systems from a graph perspective. As a result, the relative situation and the evolution of seaports within maritime networks are not well understood. This paper wishes verifying to what extent the hub-and-spoke strategies of ports and ocean carriers have modified the structure of a maritime network, based on the Atlantic case. We apply graph measures and clustering methods on liner movements in 1996 and 2006. The methodology also underlines which ports are increasing their position by carriers" circulation patterns on various scales. This research demonstrates that the polarization of the Atlantic network by few dominant ports occurs in parallel with the increased spatial integration of this area by shipping lines.
The worldwide maritime network of container shipping: spatial structure and regional dynamics
Global Networks, 2012
Port and maritime studies dealing with containerization have observed traffic concentration and dispersion throughout the world. Globalization, intermodal transportation, and technological revolutions in the shipping industry have resulted in both network extension and rationalization. However, lack of precise data on inter-port relations prevent the application of wider network theories to global maritime container networks, which are often examined through case studies of specific firms or regions. This paper presents an analysis of the global liner shipping network in 1996 and 2006, a period of rapid change in port hierarchies and liner service configurations. While it refers to literature on port system development, shipping networks, and port selection, it is one of the only analyses of the properties of the global container shipping network. The paper analyzes the relative position of ports in the global network through indicators of centrality. The results reveal a certain level of robustness in the global shipping network. While transhipment hub flows and gateway flows might slightly shift among nodes in the network, the network properties remain rather stable in terms of the main nodes polarizing the network and the overall structure of the system. Additionally, mapping the changing centrality of ports confirms the impacts of global trade and logistics shifts on the port hierarchy and indicates that changes are predominantly geographic.
Modular gateway-ness connectivity and structural core organization in maritime network science
Nature Communications
Around 80% of global trade by volume is transported by sea, and thus the maritime transportation system is fundamental to the world economy. To better exploit new international shipping routes, we need to understand the current ones and their complex systems association with international trade. We investigate the structure of the global liner shipping network (GLSN), finding it is an economic small-world network with a trade-off between high transportation efficiency and low wiring cost. To enhance understanding of this trade-off, we examine the modular segregation of the GLSN; we study provincial-, connector-hub ports and propose the definition of gateway-hub ports, using three respective structural measures. The gateway-hub structural-core organization seems a salient property of the GLSN, which proves importantly associated to network integration and function in realizing the cargo transportation of international trade. This finding offers new insights into the GLSN’s structural...
Ports in multi-level maritime networks: evidence from the Atlantic (1996–2006
Journal of Transport Geography, 2010
While maritime transport ensures about 90% of world trade volumes, it has not yet attracted as much attention as other transport systems from a graph perspective. As a result, the relative situation and the evolution of seaports within maritime networks are not well understood. This paper wishes verifying to what extent the hub-and-spoke strategies of ports and ocean carriers have modified the structure of a maritime network, based on the Atlantic case. We apply graph measures and clustering methods on liner movements in 1996 and 2006. The methodology also underlines which ports are increasing their position by carriers" circulation patterns on various scales. This research demonstrates that the polarization of the Atlantic network by few dominant ports occurs in parallel with the increased spatial integration of this area by shipping lines.
Geography versus topology in the evolution of the global container shipping network (1977–2016)
Geographies of Maritime Transport, 2020
The dynamical properties of so-called spatial and complex networks are often overlooked in graph theory and network science in general. Container shipping provides a rare example of a global transport network that went through tremendous technological and geographic changes in the last decades or so. This chapter proposes for the first time an empirical analysis of no less than 40 years of inter-port vessel movement data (1977-2016) to describe the evolving properties of the global container shipping network. Main results confirm a number of stylized facts such as the growing size, connectivity, and centralization of this network due to several factors such as economies of scale in liner shipping and the rationalization of related maritime services, the emergence of hub ports, etc. We also provide a new cartography of how had the global container shipping network been geographically distributed over time, thereby highlighting major shifts in terms of port hierarchies and main corridors. We believe that this chapter will contribute to a better understanding of the complex linkages between network structure, technological change, and spatial change, opening the way for new research paths on maritime transport research and network science in general when focusing on evolutionary dynamics.
Maritime Policy & Management, 2010
This paper is essentially an empirical investigation in the network analysis of inter-port traffic flows. Based on a database of vessel movements, it applies conventional techniques of network analysis to the graph of Northeast Asian liner networks in 1996 and 2006. Such approach proves particularly helpful for analysing the changing position of major hub ports and for revealing their respective tributary areas within the region. Despite rapid traffic growth at Chinese ports during the period under study, the latter seem to remain polarized by established hubs such as Korean ports and Hong Kong. This research reveals the strong relation between local port policies and the evolution of shipping network design.
Spatial pattern of the global shipping network and its hub-and-spoke system
Research in Transportation Economics, 2011
Port system is a research focus of transport geography, and most studies believe carriers are important factors in the development and concentration of the port system. Since the 1990s, carriers have played an important role in organizing the global shipping network and reorganizing the port system. But there isn't a perfect method to evaluate carriers' influence and the roles of each port in the maritime shipping networks. In this paper, we use the monthly schedule table of international carriers to describe and model the spatial pattern of the global shipping network and identify its hub-and-spoke system. The result shows that a hierarchical structure exists in the global shipping network. The North Hemisphere, especially the East Asia and the Southeast Asia, is a dominant region of the worldwide shipping network. East Asia, Southeast Asia, Northeast Europe, and East coast of the USA are the concentration regions of worldwide shipping lines. The ports of Hong Kong, Singapore, Shenzhen, Shanghai, and Kaohsiung etc have advanced capacity for maritime shipping and high potentials for being hub ports in the global shipping network. Today, the worldwide shipping network is transforming from the multi-port calling system to 44 regional hub-and-spoke systems. Meanwhile, the sub-networks with hub ports of Antwerp, Singapore, and Hong Kong have become the most important ones and dominate the whole global shipping network.
Maritime Network Analysis: Connectivity and Spatial Distribution
Guide to Maritime Informatics, 2021
In this chapter we apply conventional graph-theoretical and complex network methods to a sample of port and inter-port shipping flows at and amongst the top 50 European ports in 2017 to detect the main topological and geographic structures of this network. Main results confirm earlier works by physicists about liner shipping network but our approach based on dry cargo and liquid cargo goes further with a mix of novelty and confirmation on how maritime networks and the European backbone in particular is driven by which forces.
Maritime constellations: a complex network approach to shipping and ports
Maritime Policy & Management, 2012
The analysis of community structures is one major research field in the science of networks. This exercise is often biased by strong hierarchical configurations as it is the case in container shipping. After reviewing the multiple definitions of port systems, this paper applies a topological decomposition method to worldwide inter-port maritime links. Isolating ports of comparable size reveals hidden substructures with the help of graph visualization. While geographic proximity is one main explanatory factor in the emergence of port systems, other logics also appear, such as specialized and long-distance trading links. This research provides interesting evidence about the role of geography, technology and trade in the architecture of maritime networks.