Impact of Mismatch Angle on Electronic Transport Across Grain Boundaries and Interfaces in 2D Materials (original) (raw)
Related papers
Electronic transport across extended grain boundaries in graphene
Nano Express
Owing to its superlative carrier mobility and atomic thinness, graphene exhibits great promise for interconnects in future nanoelectronic integrated circuits. Chemical vapor deposition (CVD), the most popular method for wafer-scale growth of graphene, produces monolayers that are polycrystalline, where misoriented grains are separated by extended grain boundaries (GBs). Theoretical models of GB resistivity focused on small sections of an extended GB, assuming it to be a straight line, and predicted a strong dependence of resistivity on misorientation angle. In contrast, measurements produced values in a much narrower range and without a pronounced angle dependence. Here we study electron transport across rough GBs, which are composed of short straight segments connected together into an extended GB. We found that, due to the zigzag nature of rough GBs, there always exist a few segments that divide the crystallographic angle between two grains symmetrically and provide a highly conductive path for the current to flow across the GBs. The presence of highly conductive segments produces resistivity between 10 2 to 10 4 Ω μm regardless of misorientation angle. An extended GB with large roughness and small correlation length has small resistivity on the order of 10 3 Ω μm, even for highly mismatched asymmetric GBs. The effective slope of the GB, given by the ratio of roughness and lateral correlation length, is an effective universal quantifier for GB resistivity. Our results demonstrate that the probability of finding conductive segments diminishes in short GBs, which could cause a large variation in the resistivity of narrow ribbons etched from polycrystalline graphene. We also uncover spreading resistance due to the current bending in the grains to flow through the conductive segments of the GB and show that it scales linearly with the grain resistance. Our results will be crucial for designing graphene-based interconnects for future integrated circuits.
Electronic transport through ordered and disordered graphene grain boundaries
Carbon, 2013
The evolution of electronic wave packets (WPs) through grain boundaries (GBs) of various structures in graphene was investigated by the numerical solution of the time-dependent Schrö dinger equation. WPs were injected from a simulated STM tip placed above one of the grains. Electronic structure of the GBs was calculated by ab-initio and tight-binding methods. Two main factors governing the energy dependence of the transport have been identified: the misorientation angle of the two adjacent graphene grains and the atomic structure of the GB. In case of an ordered GB made of a periodic repetition of pentagonÀheptagon pairs, it was found that the transport at high and low energies is mainly determined by the misorientation angle, but the transport around the Fermi energy is correlated with the electronic structure of the GB. A particular line defect with zero misorientation angle Lahiri et al., behaves as a metallic nanowire and shows electron-hole asymmetry for hot electrons or holes. To generate disordered GBs, found experimentally in CVD graphene samples, a Monte-Carlo-like procedure has been developed. Results show a reduced transport for the disordered GBs, primarily attributed to electronic localized states caused by C atoms with only two covalent bonds.
Transport properties through graphene grain boundaries: strain effects versus lattice symmetry
Nanoscale, 2016
As most materials available in macroscopic quantities, graphene appears in a polycrystalline form and thus contains grain boundaries. In the present work, the effect of uniaxial strain on the electronic transport properties through graphene grain boundaries is investigated using atomistic simulations. A systematic picture of the transport properties with respect to the strain and the lattice symmetry of graphene domains on both sides of the boundary is provided. In particular, it is shown that the strain engineering can be used to open a finite transport gap in all graphene systems where two domains exhibit different orientations. This gap value is found to depend on the strain magnitude, on the strain direction and on the lattice symmetry of graphene domains. By choosing appropriately the strain direction, a large transport gap of a few hundred meV can be achieved when applying a small strain of only a few percents. For a specific class of graphene grain boundary systems, the strain engineering can also be used to reduce the scattering on defects and hence to significantly enhance the conductance. With a large strain-induced gap, these graphene heterostructures are proposed to be possible candidates for highly sensitive strain sensors, flexible transistors and p-n junctions with a strong non-linear I-V characteristics.
Misorientation-angle-dependent electrical transport across molybdenum disulfide grain boundaries
Nature communications, 2016
Grain boundaries in monolayer transition metal dichalcogenides have unique atomic defect structures and band dispersion relations that depend on the inter-domain misorientation angle. Here, we explore misorientation angle-dependent electrical transport at grain boundaries in monolayer MoS2 by correlating the atomic defect structures of measured devices analysed with transmission electron microscopy and first-principles calculations. Transmission electron microscopy indicates that grain boundaries are primarily composed of 5-7 dislocation cores with periodicity and additional complex defects formed at high angles, obeying the classical low-angle theory for angles <22°. The inter-domain mobility is minimized for angles <9° and increases nonlinearly by two orders of magnitude before saturating at ∼16 cm(2) V(-1) s(-1) around misorientation angle≈20°. This trend is explained via grain-boundary electrostatic barriers estimated from density functional calculations and experimental t...
Electronic properties of graphene grain boundaries
New Journal of Physics, 2014
Grain boundaries and defect lines in graphene are intensively studied for their novel electronic and magnetic properties. However, there is not a complete comprehension of the appearance of localized states along these defects. Graphene grain boundaries are herein seen as the outcome of matching two semiinfinite graphene sheets with different edges. We classify the energy spectra of grain boundaries into three different types, directly related to the combination of the four basic classes of spectra of graphene edges. From the specific geometry of the grains, we are able to obtain the band structure and the number of localized states close to the Fermi energy. This provides a new understanding of states localized at grain boundaries, showing that they are derived from the edge states of graphene. Such knowledge is crucial for the ultimate tailoring of electronic and optoelectronic applications.
Bimodal Phonon Scattering in Graphene Grain Boundaries
Graphene has served as the model 2D system for over a decade, and the effects of grain boundaries (GBs) on its electrical and mechanical properties are very well investigated. However, no direct measurement of the correlation between thermal transport and graphene GBs has been reported. Here, we report a simultaneous comparison of thermal transport in supported single crystalline graphene to thermal transport across an individual graphene GB. Our experiments show that thermal conductance (per unit area) through an isolated GB can be up to an order of magnitude lower than the theoretically anticipated values. Our measurements are supported by Boltzmann transport modeling which uncovers a new bimodal phonon scattering phenomenon initiated by the GB structure. In this novel scattering mechanism, boundary roughness scattering dominates the phonon transport in low-mismatch GBs, while for higher mismatch angles there is an additional resistance caused by the formation of a disordered region at the GB. Nonequilibrium molecular dynamics simulations verify that the amount of disorder in the GB region is the determining factor in impeding thermal transport across GBs.
Localized electronic states at grain boundaries on the surface of graphene and graphite
2D Materials, 2016
Recent advances in large-scale synthesis of graphene and other 2D materials have underscored the importance of local defects such as dislocations and grain boundaries (GBs), and especially their tendency to alter the electronic properties of the material. Understanding how the polycrystalline morphology affects the electronic properties is crucial for the development of applications such as flexible electronics, energy harvesting devices or sensors. We here report on atomic scale characterization of several GBs and on the structural-dependence of the localized electronic states in their vicinity. Using low temperature scanning tunneling microscopy (STM) and spectroscopy (STS), together with tight binding and ab initio numerical simulations we explore GBs on the surface of graphite and elucidate the interconnection between the local density of states (LDOS) and their atomic structure. We show that the electronic fingerprints of these GBs consist of pronounced resonances which, depending on the relative orientation of the adjacent crystallites, appear either on the electron side of the spectrum or as an electron-hole symmetric doublet close to the charge neutrality point. These two types of spectral features will impact very differently the transport properties allowing, in the asymmetric case to introduce transport anisotropy which could be utilized to design novel growth and fabrication strategies to control device performance.
Effect of grain boundaries on thermal transport in graphene
2013
Abstract We investigate the influence of grain boundaries (GBs), line defects (LDs), and chirality on thermal transport in graphene using non-equilibrium Green's functions. At room temperature, the ballistic thermal conductance is∼ 4.2 GW m-2 K-1, and single GBs or LDs yield transmission from 50% to 80% of this value. LDs with carbon atom octagon defects have lower thermal transmission than that of GBs with pentagon and heptagon defects.
Contact resistance at graphene/MoS2 lateral heterostructures
Applied Physics Letters, 2019
The contact resistance at two-dimensional graphene/MoS 2 lateral heterojunctions is theoretically studied, using first-principles simulations based on density functional theory and the nonequilibrium Green's function method. The computed contact resistance lies in the range of 10 2 to 10 4 X lm, depending on the contact edge symmetry (armchair or zigzag) and termination (Mo and/or S terminated). This large variation in the contact resistance arises from the variation in the interface barrier height, which is sensitive to the presence of polar C-Mo bonds or sulfur dangling bonds at the interface. These results highlight that the control of the edge symmetry and/or edge termination is crucial to achieve a low contact resistance (in the range of a few hundred ohms micrometer) at graphene/MoS 2 lateral heterojunctions for 2D materialbased field-effect devices.
Tuning transport across MoS2/graphene interfaces via as-grown lateral heterostructures
npj 2D Materials and Applications, 2020
An unexploited property of graphene-based heterojunctions is the tunable doping of the junction via electrostatic gating. This unique property may be key in advancing electronic transport across interfaces with semiconductors. Here, we engineer transport in semiconducting TMDs by constructing a lateral heterostructure with epitaxial graphene and tuning its intrinsic doping to form a p–n junction between the graphene and the semiconducting TMDs. Graphene grown on SiC (epitaxial graphene) is intrinsically doped via substrate polarization without the introduction of an external dopant, thus enabling a platform for pristine heterostructures with a target band alignment. We demonstrate an electrostatically tunable graphene/MoS2p–n junction with >20× reduction and >10× increased tunability in contact resistance (Rc) compared with metal/TMD junctions, attributed to band alignment engineering and the tunable density of states in graphene. This unique concept provides improved control ...