Progress in particle tracking and vertexing detectors (original) (raw)

Beyond the CMOS sensors: the DoTPiX pixel concept and technology for the International Linear Collider A

2021

CMOS sensors were successfully implemented in the STAR tracker [1]. LHC experiments have shown that efficient b tagging, reconstruction of displaced vertices and identification of disappearing tracks are necessary. An improved vertex detector is justified for the ILC. To achieve a point(spatial single layer) resolution below the one-{\mu}m range while improving other characteristics (radiation tolerance and eventually time resolution) we will need the use of 1-micron pitch pixels. Therefore, we propose a single MOS transistor that acts as an amplifying device and a detector with a buried charge-collecting gate. Device simulations both classical and quantum, have led to the proposed DoTPiX structure. With the evolution of silicon processes, well below 100 nm line feature, this pixel should be feasible. We will present this pixel detector and the present status of its development in both our institution (IRFU) and in other collaborating labs (CNRS/C2N).

High resolution pixel detectors for e+e- linear colliders

1999

The physics goals at the future e+e- linear collider require high performance vertexing and impact parameter resolution. Two possible technologies for the vertex detector of an experimental apparatus are outlined in the paper: an evolution of the Hybrid Pixel Sensors already used in high energy physics experiments and a new detector concept based on the monolithic CMOS sensors.

A vertex detector for the International Linear Collider based on CMOS sensors

Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2006

The physics programme at the International Linear Collider (ILC) calls for a Vertex Detector (VD) providing unprecedented flavour tagging performances, especially for c-quarks and τ leptons. This requirement makes a very granular, thin and multilayer vertex detector installed very close to the interaction region mandatory. Additional constraints, mainly on read-out speed and radiation tolerance, originate from the beam background, which governs the occupancy and the radiation level the detector should be able to cope with. CMOS sensors are being developed to fulfil these requirements. This report addresses the ILC requirements (highly related to beamstrahlung), the main advantages and features of CMOS sensors, the demonstrated performances and the specific aspects of a vertex detector based on this technology. The status of the main R&D directions (radiation tolerance, thinning procedure and read-out speed) are also presented.

Performance of the reconstruction algorithms of the FIRST experiment pixel sensors vertex detector

Nuclear Instruments and Methods in Physics Research Section A Accelerators Spectrometers Detectors and Associated Equipment

Hadrontherapy treatments use charged particles (e.g. protons and carbon ions) to treat tumors. During a therapeutic treatment with carbon ions, the beam undergoes nuclear fragmentation processes giving rise to significant yields of secondary charged particles. An accurate prediction of these production rates is necessary to estimate precisely the dose deposited into the tumours and the surrounding healthy tissues. Nowadays, a limited set of double differential carbon fragmentation cross-section is available.

Developement of a High Precision and Swift Vertex Detector based on CMOS Sensors for the International Linear Collider

2005

CMOS sensors are being developed to equip a vertex detector offering the perfomances required for the physics programme at the International Linear Collider. The progress realised from Spring 2003 to Spring 2005 is exposed in this report. It addresses the exploration of new fabrication processes, the design of fast integrated signal processing micro-circuits, the assessment and improvement of the radiation tolerance, the reduction of the power dissipation, the thinning of the sensors, the design of a light mechanical support and cooling studies. Progresses were also achieved on a detector design exploiting the features of CMOS sensors. Since several performance requirements are dictated by the beamstrahlung electron rate, the latter was revisited and assessed with improved accuracy. The constraints coming out from this study are significantly more stringent than those written in the TESLA TDR.

A pixel unit-cell targeting 16ns resolution and radiation hardness in a column read-out particle vertex detector

Nuclear Physics B - Proceedings Supplements, 1993

This document was prepared as an account of work sponsored by the United States Government. Neither the United States Government nor any agency thereof, nor The Regents of the University of California, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, c,. usefuln_s of any infom_ation, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by its trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof, or The Regents of the University of California. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof or The Regents of the University of California and shall not be used for advertising or product endorsement purposes.