STAT1 is not dominant negative and is capable of contributing to IFN -dependent innate immunity (original) (raw)
Related papers
EMBO reports, 2003
Stat1 (signal transducer and activator of transcription 1) regulates transcription in response to the type I interferons IFN-α and IFN-β, either in its dimerized form or as a subunit of the interferon-stimulated gene factor 3 (Isgf3) complex (consisting of Stat1, Stat2 and interferon-regulating factor 9). Full-length Stat1-α and the splice variant Stat1-β, which lacks the carboxyl terminus and the Ser727 phosphorylation site, are found in all cell types. IFN-induced phosphorylation of Stat1-α on Ser727 occurs in the absence of the candidate kinase, protein kinase C-δ. When expressed in Stat1-deficient cells, Stat1-β and a Stat1-S727A mutant both restored the formation of Stat1 dimers and of the Isgf3 complex on treatment with IFN-β. By contrast, only Stat1-α restored the ability of IFN-β to induce high levels of transcription from target genes of Stat1 dimers and Isgf3 and to induce an antiviral state. Our data suggest an important contribution of the Stat1 C terminus and its phosphorylation at Ser727 to the transcriptional activities of the Stat1 dimer and the Isgf3 complex.
Impaired response to interferon-α/β and lethal viral disease in human STAT1 …
Nature genetics, 2003
The receptors for interferon-α/β (IFN-α/β) and IFN-γ activate components of the Janus kinase-signal transducer and activator of transcription (JAK-STAT) signaling pathway, leading to the formation of at least two transcription factor complexes 1. STAT1 interacts with STAT2 and p48/IRF-9 to form the transcription factor IFN-stimulated gene factor 3 (ISGF3). STAT1 dimers form γ-activated factor (GAF). ISGF3 is induced mainly by IFN-α/β, and GAF by IFN-γ, although both factors can be activated by both types of IFN. Individuals with mutations in either chain of the IFN-γ receptor (IFN-γR) are susceptible to infection with mycobacteria 2-5. A heterozygous STAT1 mutation that impairs GAF but not ISGF3 activation has been found in other individuals with mycobacterial disease 6. No individuals with deleterious mutations in the IFN-α/β signaling pathway have been described. We report here two unrelated infants homozygous with respect to mutated STAT1 alleles. Neither IFN-α/β nor IFN-γ activated STAT1-containing transcription factors. Like individuals with IFN-γR deficiency, both infants suffered from mycobacterial disease, but unlike individuals with IFN-γR deficiency, both died of viral disease. Viral multiplication was not inhibited by recombinant IFN-α/β in cell lines from the two individuals. Inherited impairment of the STAT1-dependent response to human IFN-α/β thus results in susceptibility to viral disease.
PLOS Pathogens, 2020
Signal transducers and activators of transcription (STAT) 1 is critical for cellular responses to type I interferons (IFN-Is), with the capacity to determine the outcome of viral infection. We previously showed that while wildtype (WT) mice develop mild disease and survive infection with lymphocytic choriomeningitis virus (LCMV), LCMV infection of STAT1-deficient mice results in a lethal wasting disease that is dependent on IFN-I and CD4 + cells. IFN-Is are considered to act as a bridge between innate and adaptive immunity. Here, we determined the relative contribution of STAT1 on innate and adaptive immunity during LCMV infection. We show that STAT1 deficiency results in a biphasic disease following LCMV infection. The initial, innate immunity-driven phase of disease was characterized by rapid weight loss, thrombocytopenia, systemic cytokine and chemokine responses and leukocyte infiltration of infected organs. In the absence of an adaptive immune response, this first phase of disease largely resolved resulting in survival of the infected host. However, in the presence of adaptive immunity, the disease progressed into a second phase with continued cytokine and chemokine production, persistent leukocyte extravasation into infected tissues and ultimately, host death. Overall, our findings demonstrate the key contribution of STAT1 in modulating innate and adaptive immunity during type I interferon-mediated lethal virus infection.
Impaired response to interferon-α/β and lethal viral disease in human STAT1 deficiency
Nature Genetics, 2003
The receptors for interferon-α/β (IFN-α/β) and IFN-γ activate components of the Janus kinase-signal transducer and activator of transcription (JAK-STAT) signaling pathway, leading to the formation of at least two transcription factor complexes 1 . STAT1 interacts with STAT2 and p48/IRF-9 to form the transcription factor IFN-stimulated gene factor 3 (ISGF3). STAT1 dimers form γ-activated factor (GAF). ISGF3 is induced mainly by IFN-α/β, and GAF by IFN-γ, although both factors can be activated by both types of IFN. Individuals with mutations in either chain of the IFN-γ receptor (IFN-γR) are susceptible to infection with mycobacteria 2-5 . A heterozygous STAT1 mutation that impairs GAF but not ISGF3 activation has been found in other individuals with mycobacterial disease 6 . No individuals with deleterious mutations in the IFN-α/β signaling pathway have been described. We report here two unrelated infants homozygous with respect to mutated STAT1 alleles. Neither IFN-α/β nor IFN-γ activated STAT1-containing transcription factors. Like individuals with IFN-γR deficiency, both infants suffered from mycobacterial disease, but unlike individuals with IFN-γR deficiency, both died of viral disease. Viral multiplication was not inhibited by recombinant IFN-α/β in cell lines from the two individuals. Inherited impairment of the STAT1-dependent response to human IFN-α/β thus results in susceptibility to viral disease.
A novel anti-viral role for STAT3 in IFN-α signalling responses
Cellular and molecular life sciences : CMLS, 2017
The cytokine, Interferon (IFN)-α, induces a wide spectrum of anti-viral mediators, via the Janus kinase/signal transducer and activator of transcription (JAK/STAT) pathway. STAT1 and STAT2 are well characterised to upregulate IFN-stimulated gene (ISG) expression; but even though STAT3 is also activated by IFN-α, its role in anti-viral ISG induction is unclear. Several viruses, including Hepatitis C and Mumps, reduce cellular STAT3 protein levels, via the promotion of ubiquitin-mediated proteasomal degradation. This viral immune evasion mechanism suggests an undiscovered anti-viral role for STAT3 in IFN-α signalling. To investigate STAT3's functional involvement in this Type I IFN pathway, we first analysed its effect upon the replication of two viruses, Influenza and Vaccinia. Viral plaque assays, using Wild Type (WT) and STAT3-/- Murine Embryonic Fibroblasts (MEFs), revealed that STAT3 is required for the inhibition of Influenza and Vaccinia replication. Furthermore, STAT3 shRN...
PLoS biology, 2016
STAT2 is the quintessential transcription factor for type 1 interferons (IFNs), where it functions as a heterodimer with STAT1. However, the human and murine STAT2-deficient phenotypes suggest important additional and currently unidentified type 1 IFN-independent activities. Here, we show that STAT2 constitutively bound to STAT1, but not STAT3, via a conserved interface. While this interaction was irrelevant for type 1 interferon signaling and STAT1 activation, it precluded the nuclear translocation specifically of STAT1 in response to IFN-γ, interleukin-6 (IL-6), and IL-27. This is explained by the dimerization between activated STAT1 and unphosphorylated STAT2, whereby the semiphosphorylated dimers adopted a conformation incapable of importin-α binding. This, in turn, substantially attenuated cardinal IFN-γ responses, including MHC expression, senescence, and antiparasitic immunity, and shifted the transcriptional output of IL-27 from STAT1 to STAT3. Our results uncover STAT2 as a...
Functional Crosstalk between Type I and II Interferon through the Regulated Expression of STAT1
PLoS Biology, 2010
Autocrine priming of cells by small quantities of constitutively produced type I interferon (IFN) is a well-known phenomenon. In the absence of type I IFN priming, cells display attenuated responses to other cytokines, such as anti-viral protection in response to IFNc. This phenomenon was proposed to be because IFNa/b receptor1 (IFNAR1) is a component of the IFNc receptor (IFNGR), but our new data are more consistent with a previously proposed model indicating that regulated expression of STAT1 may also play a critical role in the priming process. Initially, we noticed that DNA binding activity of STAT1 was attenuated in c-Jun 2/2 fibroblasts because they expressed lower levels of STAT1 than wild-type cells. However, expression of STAT1 was rescued by culturing c-Jun 2/2 fibroblasts in media conditioned by wild-type fibroblasts suggesting they secreted a STAT1-inducing factor. The STAT1-inducing factor in fibroblast-conditioned media was IFNb, as it was inhibited by antibodies to IFNAR1, or when IFNb expression was knocked down in wild-type cells. IFNAR1 2/2 fibroblasts, which cannot respond to this priming, also expressed reduced levels of STAT1, which correlated with their poor responses to IFNc. The lack of priming in IFNAR1 2/2 fibroblasts was compensated by over-expression of STAT1, which rescued molecular responses to IFNc and restored the ability of IFNc to induce protective anti-viral immunity. This study provides a comprehensive description of the molecular events involved in priming by type I IFN. Adding to the previous working model that proposed an interaction between type I and II IFN receptors, our work and that of others demonstrates that type I IFN primes IFNc-mediated immune responses by regulating expression of STAT1. This may also explain how type I IFN can additionally prime cells to respond to a range of other cytokines that use STAT1 (e.g., IL-6, M-CSF, IL-10) and suggests a potential mechanism for the changing levels of STAT1 expression observed during viral infection.
Global changes in STAT target selection and transcription regulation upon interferon treatments
Genes & Development, 2005
The STAT (signal transducer and activator of transcription) proteins play a crucial role in the regulation of gene expression, but their targets and the manner in which they select them remain largely unknown. Using chromatin immunoprecipitation and DNA microarray analysis (ChIP–chip), we have identified the regions of human chromosome 22 bound by STAT1 and STAT2 in interferon-treated cells. Analysis of the genomic loci proximal to these binding sites introduced new candidate STAT1 and STAT2 target genes, several of which are affiliated with proliferation and apoptosis. The genes on chromosome 22 that exhibited interferon-induced up- or down-regulated expression were determined and correlated with the STAT-binding site information, revealing the potential regulatory effects of STAT1 and STAT2 on their target genes. Importantly, the comparison of STAT1-binding sites upon interferon (IFN)- and IFN- treatments revealed dramatic changes in binding locations between the two treatments. The IFN- induction revealed nonconserved STAT1 occupancy at IFN-induced sites, as well as novel sites of STAT1 binding not evident in IFN--treated cells. Many of these correlated with binding by STAT2, but others were STAT2 independent, suggesting that multiple mechanisms direct STAT1 binding to its targets under different activation conditions. Overall, our results reveal a wealth of new information regarding IFN/STAT-binding targets and also fundamental insights into mechanisms of regulation of gene expression in different cell states.