Unveiling the Hidden Bat Diversity of a Neotropical Montane Forest (original) (raw)

Patterns of diversification in two species of short-tailed bats (Carollia Gray, 1838): the effects of historical fragmentation of Brazilian rainforests

The small-sized frugivorous bat Carollia perspicillata is an understory specialist and occurs in a wide range of lowland habitats, tending to be more common in tropical dry or moist forests of South and Central America. Its sister species, Carollia brevicauda, occurs almost exclusively in the Amazon rainforest. A recent phylogeographic study proposed a hypothesis of origin and subsequent diversification for C. perspicillata along the Atlantic coastal forest of Brazil. Additionally, it also found two allopatric clades for C. brevicauda separated by the Amazon Basin. We used cytochrome b gene sequences and a more extensive sampling to test hypotheses related to the origin and diversification of C. perspicillata plus C. brevicauda clade in South America. The results obtained indicate that there are two sympatric evolutionary lineages within each species. In C. perspicillata, one lineage is limited to the Southern Atlantic Forest, whereas the other is widely distributed. Coalescent analysis points to a simultaneous origin for C. perspicillata and C. brevicauda, although no place for the diversification of each species can be firmly suggested. The phylogeographic pattern shown by C. perspicillata is also congruent with the Pleistocene refugia hypothesis as a likely vicariant phenomenon shaping the present distribution of its intraspecific lineages.

Taxonomic and Phylogenetic Determinants of Functional Composition of Bolivian Bat Assemblages

Understanding diversity patterns and the potential mechanisms driving them is a fundamental goal in ecology. Examination of different dimensions of biodiversity can provide insights into the relative importance of different processes acting upon biotas to shape communities. Unfortunately, patterns of diversity are still poorly understood in hyper-diverse tropical countries. Here, we assess spatial variation of taxonomic, functional and phylogenetic diversity of bat assemblages in one of the least studied Neotropical countries, Bolivia, and determine whether changes in biodiversity are explained by the replacement of species or functional groups, or by differences in richness (i.e., gain or loss of species or functional groups). Further , we evaluate the contribution of phylogenetic and taxonomic changes in the resulting patterns of functional diversity of bats. Using well-sampled assemblages from published studies we examine noctilionoid bats at ten study sites across five ecoregions in Bolivia. Bat assemblages differed from each other in all dimensions of biodiversity considered; however , diversity patterns for each dimension were likely structured by different mechanisms. Within ecoregions, differences were largely explained by species richness, suggesting that the gain or loss of species or functional groups (as opposed to replacement) was driving dis-similarity patterns. Overall, our results suggest that whereas evolutionary processes (i.e., historical connection and dispersal routes across Bolivia) create a template of diversity patterns across the country, ecological mechanisms modify these templates, decoupling the observed patterns of functional, taxonomic and phylogenetic diversity in Bolivian bats. Our results suggests that elevation represents an important source of variability among diversity patterns for each dimension of diversity considered. Further, we found that neither phyloge-netic nor taxonomic diversity can fully account for patterns of functional diversity, highlighting the need for examining different dimensions of biodiversity of bats in hyperdiverse ecosystems.

Molecular verification of bat species collected in Ecuador: Results of a country-wide survey

2011

We report the results of a two-month bat survey from 33 different sampling localities in the country of Ecuador conducted in the summer of 2006. Biologists from Angelo State University and the Pontificia Universidad Católica del Ecuador participated in this survey that was designed to collect information on bats from a diverse set of habitats and locations, with a particular emphasis on anthropogenic roost sites. We were particularly interested in documenting diversity of the family Molossidae in Ecuador. Between 20 June and 12 August 2006 we captured a total of 361 bats, of which, a subset totaling 163 individuals representing 45 species were collected and prepared as museum vouchers with associated tissues. Species were identified using traditional morphology and DNA sequences from the mitochondrial genes cytochrome oxidase subunit I (COI) or cytochrome-b. Noteworthy distributional records, unique genetic lineages, and use of urban roosts are discussed.

Caribbean Island Zoogeography: A New Approach Using Mitochondrial DNA to Study Neotropical Bats

1989

Genetic analysis of animal mitochondrial DNA is a new and valuable addition to the battery of techniques available to zoogeographers. This paper describes characteristics of mitochondrial DNA (mtDNA) that make it applicable for the study of island zoogeography. Some traditional zoogeographic questions are examined using mtDNA from the Neotropical fruit bat, Artibeus jamaicensis. The specific questions are: 1) To what extent are island populations isolated (that is, does interbreeding occur between the insular subspecies)? 2) Can a single founding female account for the mitochondrial genomes on specific islands in the Antilles? 3) Is there a correlation between the genomic diversity of an island population and the size of the island or the distance from the mainland? The mitochondrial genome in Artibeus jamaicensis is approximately 16,000-16,500 base pairs. Three major mtDNA groups (designated J, SV, and G), separated by 8 to 17.2 percent divergence in nucleotide sequence, were ident...

Genetic Diversity of Tropical Bats and Its Relationship With Ecological Role in a Tropical Semievergreen Rain Forest in El Ocote Biosphere Reserve, Chiapas, Mexico

Tropical Conservation Science, 2018

Species that are functionally equivalent but with little taxonomical relationship may display similar genetic patterns if the ecological function evolves genetically in the same way. This study investigated the levels of genetic diversity in the D-Loop gene of random samples collected from 21 bat species inhabiting El Ocote Biosphere Reserve (REBISO, for its acronym in Spanish), and whether the genetic diversity pattern could be associated with the ecological role. Genetic differences between functional groups, localities, and species were evaluated through generalized linear models using the Gaussian distribution error family for nucleotide diversity (p) and the Poisson family for haplotype diversity (h) and segregating sites (s). To study the clustering pattern of species based on nucleotide variation, genetic distances (Kimura's two-parameter model) between functional groups were calculated, and a Principal Components Analysis on genetic diversity parameters was run. Most of the species analyzed (20) maintained genetic diversity levels ranging from medium to high in all genetic diversity estimators. According to genetic distances, the species with the same ecological function shared a greater number of nucleotide substitutions, with some exceptions. The Principal Components Analysis did not detect any genetic structure in relation to the ecological function. Our study found no association between the diversity of the D-Loop gene and ecological function; nonetheless, it confirms the importance of REBISO as a reservoir of bat species richness and genetic diversity in Mexico.

Neotropical Bats: Estimating Species Diversity with DNA Barcodes

PLoS ONE, 2011

DNA barcoding using the cytochrome c oxidase subunit 1 gene (COI) is frequently employed as an efficient method of species identification in animal life and may also be used to estimate species richness, particularly in understudied faunas. Despite numerous past demonstrations of the efficiency of this technique, few studies have attempted to employ DNA barcoding methodologies on a large geographic scale, particularly within tropical regions. In this study we survey current and potential species diversity using DNA barcodes with a collection of more than 9000 individuals from 163 species of Neotropical bats (order Chiroptera). This represents one of the largest surveys to employ this strategy on any animal group and is certainly the largest to date for land vertebrates. Our analysis documents the utility of this tool over great geographic distances and across extraordinarily diverse habitats. Among the 163 included species 98.8% possessed distinct sets of COI haplotypes making them easily recognizable at this locus. We detected only a single case of shared haplotypes. Intraspecific diversity in the region was high among currently recognized species (mean of 1.38%, range 0-11.79%) with respect to birds, though comparable to other bat assemblages. In 44 of 163 cases, well-supported, distinct intraspecific lineages were identified which may suggest the presence of cryptic species though mean and maximum intraspecific divergence were not good predictors of their presence. In all cases, intraspecific lineages require additional investigation using complementary molecular techniques and additional characters such as morphology and acoustic data. Our analysis provides strong support for the continued assembly of DNA barcoding libraries and ongoing taxonomic investigation of bats.

Genetic Introgression and Morphological Variation in Naked-Back Bats (Chiroptera: Mormoopidae: Pteronotus Species) along Their Contact Zone in Central America

Diversity, 2021

Two sibling bare-backed bat species (Pteronotus fulvus and P. gymnonotus) have been traditionally differentiated by their size. However, intermediate specimens between the two species have been found in sympatric populations along southern Mexico and it has been suggested that they may be the outcome of a hybridization process between the two species. We used one mitochondrial (COI), three nuclear markers (PRKCL, STAT5A and RAG2) and 13 microsatellites to explore the evolutionary relationships between these two species and elucidate whether the intermediate morphotypes correspond to hybrid individuals. These markers have been analyzed in sympatric and allopatric populations of the two species plus the closely related species Pteronotus davyi. We confirmed the species-level differentiation of the three lineages (P. fulvus, P. davyi and P. gymnonotus), but the phylogenetic hypotheses suggested by the nuclear and mitochondrial markers were discordant. We confirm that the discordance between markers is due to genetic introgression through the mitochondrial capture of P. fulvus in P. gymnonotus populations. Such introgression was found in all P. gymnonotus specimens across its sympatric distribution range (Mexico to Costa Rica) and is related to expansion/retraction species distribution pulses associated with changes in forest distribution during the Quaternary climate cycles. Microsatellite analyses showed contemporary genetic contact between the two sympatric species and 3.0% of the samples studied were identified as hybrids. In conclusion, we found a historical and asymmetric genetic introgression (through mitochondrial capture) of P. fulvus into P. gymnonotus in Mexico and Central America and a limited contemporary gene exchange between the two species. However, no relationship was found between hybridization and the intermediate-sized specimens from southern Mexico, which might likely result from a clinal variation with latitude. These results confirm the need for caution when using forearm size to identify these species in the field and when differentiating them in the laboratory based on mitochondrial DNA alone.

Zoogeography of South American Forest-Dwelling Bats: Disjunct Distributions or Sampling Deficiencies?

PloS one, 2015

Many forest-dwelling bats are purported to be widespread in South America, although records are scant from the vast diagonal belt of dry ecosystems that straddles the continent, implying possible sampling deficiencies. Here, we investigate this possibility in the case of four species of bat (Centronycteris maximiliani, Lampronycteris brachyotis, Peropteryx kappleri and Trinycteris nicefori), evaluating whether their disjunct present-day distributions reflect their true zoogeographic characteristics or the subsampling of intermediate zones. We use environmental niche modelling (ENM) in an ensemble approach, combining four different modeling techniques, and using niche descriptors based on climatic and remote sensing data, to estimate the potential distribution of the four species. The models indicate that all four species have disjunct distributions in the Amazon and Atlantic forest biomes. The one possible exception is P. kappleri, which the models indicated might potentially occur ...

Supplementary material 1 from: Patterson BD, Webala PW, Lavery TH, Agwanda BR, Goodman SM, Kerbis Peterhans JC, Demos TC (2020) Evolutionary relationships and population genetics of the Afrotropical leaf-nosed bats (Chiroptera, Hipposideridae). ZooKeys 929: 117-161. https://doi.org/10.3897/zookey...

The Old World leaf-nosed bats (Hipposideridae) are aerial and gleaning insectivores that occur throughout the Paleotropics. Both their taxonomic and phylogenetic histories are confused. Until recently, the family included genera now allocated to the Rhinonycteridae and was recognized as a subfamily of Rhinolophidae. Evidence that Hipposideridae diverged from both Rhinolophidae and Rhinonycteridae in the Eocene confirmed their family rank, but their intrafamilial relationships remain poorly resolved. We examined genetic variation in the Afrotropical hipposiderids Doryrhina, Hipposideros, and Macronycteris using relatively dense taxon-sampling throughout East Africa and neighboring regions. Variation in both mitochondrial (cyt-b) and four nuclear intron sequences (ACOX2, COPS, ROGDI, STAT5) were analyzed using both maximum likelihood and Bayesian inference methods. We used intron sequences and the lineage delimitation method BPP-a multilocus, multi-species coalescent approach-on supported mitochondrial clades to identify those acting as independent evolutionary lineages. The program StarBEAST was used on the intron sequences to produce a species tree of the sampled Afrotropical hipposiderids. All genetic analyses strongly support generic monophyly, with Doryrhina and Macronycteris as Afrotropical sister genera distinct from a Paleotropical Hipposideros; mitochondrial analyses interpose the genera Aselliscus, Coelops, and Asellia between these clades. Mitochondrial analyses also suggest at least two separate

Supplementary material 3 from: Patterson BD, Webala PW, Lavery TH, Agwanda BR, Goodman SM, Kerbis Peterhans JC, Demos TC (2020) Evolutionary relationships and population genetics of the Afrotropical leaf-nosed bats (Chiroptera, Hipposideridae). ZooKeys 929: 117-161. https://doi.org/10.3897/zookey...

The Old World leaf-nosed bats (Hipposideridae) are aerial and gleaning insectivores that occur throughout the Paleotropics. Both their taxonomic and phylogenetic histories are confused. Until recently, the family included genera now allocated to the Rhinonycteridae and was recognized as a subfamily of Rhinolophidae. Evidence that Hipposideridae diverged from both Rhinolophidae and Rhinonycteridae in the Eocene confirmed their family rank, but their intrafamilial relationships remain poorly resolved. We examined genetic variation in the Afrotropical hipposiderids Doryrhina, Hipposideros, and Macronycteris using relatively dense taxon-sampling throughout East Africa and neighboring regions. Variation in both mitochondrial (cyt-b) and four nuclear intron sequences (ACOX2, COPS, ROGDI, STAT5) were analyzed using both maximum likelihood and Bayesian inference methods. We used intron sequences and the lineage delimitation method BPP-a multilocus, multi-species coalescent approach-on supported mitochondrial clades to identify those acting as independent evolutionary lineages. The program StarBEAST was used on the intron sequences to produce a species tree of the sampled Afrotropical hipposiderids. All genetic analyses strongly support generic monophyly, with Doryrhina and Macronycteris as Afrotropical sister genera distinct from a Paleotropical Hipposideros; mitochondrial analyses interpose the genera Aselliscus, Coelops, and Asellia between these clades. Mitochondrial analyses also suggest at least two separate