Genome sequence analysis: scientific objectives and practical strategies (original) (raw)
Related papers
next generation sequencing methods and protocols
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication does not imply, even in the absence of a specific statement, that such names are exempt from the relevant protective laws and regulations and therefore free for general use. The publisher, the authors and the editors are safe to assume that the advice and information in this book are believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors give a warranty, express or implied, with respect to the material contained herein or for any errors or omissions that may have been made. The publisher remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Overviews of “next-generation sequencing&rdquo
Research and Reports in Forensic Medical Science, 2015
DNA sequencing technology has a rich diverse history. Over the past several years, next-generation sequencing (NGS) has demonstrated its potential to accelerate research in the field of life sciences in general and forensic sciences in particular. Although the abilities of these new technologies allow cheap and comprehensive analyses within a short time, other important characteristics other than the technologies themselves (such as the quantity and quality of data) are generated. These characteristics present a set of challenges for experimental design, data analysis, and interpretation. Moreover, other improvements are needed to make NGS technology more attractive for routine forensics work. This review aims to shed light on the development and advancements of NGS from both historical and contemporary views. Advantages and limitations of NGS are mentioned and NGS in forensic sciences is summarized.
ELECTROPHORESIS, 2009
Sequencing of human and other genomes has been at the center of interest in the biomedical field over the past several decades and is now leading toward an era of personalized medicine. During this time, DNA-sequencing methods have evolved from the labor-intensive slab gel electrophoresis, through automated multiCE systems using fluorophore labeling with multispectral imaging, to the ''next-generation'' technologies of cyclic-array, hybridization based, nanopore and single molecule sequencing. Deciphering the genetic blueprint and follow-up confirmatory sequencing of Homo sapiens and other genomes were only possible with the advent of modern sequencing technologies that were a result of step-by-step advances with a contribution of academics, medical personnel and instrument companies. While nextgeneration sequencing is moving ahead at breakneck speed, the multicapillary electrophoretic systems played an essential role in the sequencing of the Human Genome, the foundation of the field of genomics. In this prospective, we wish to overview the role of CE in DNA sequencing based in part of several of our articles in this journal.