A study of Artificial Neural Network and its implementation from scratch (original) (raw)
Related papers
Artificial Neural Network: A brief study
IRJET, 2023
An Artificial Neural Network (ANN) is a data processing paradigm inspired by the way biological nervous systems, such as the brain, process data. The unique structure of the information processing system is a crucial component of this paradigm. It is made up of a huge number of highly interconnected processing elements (neurons) that work together to solve issues. ANNs, like humans, learn by example, and a huge dataset results in more accuracy. Through a learning process, an ANN is trained for a specific application, such as pattern recognition or data classification. This is also true of ANNs. This paper provides an overview of Artificial Neural Networks (ANN), their working, and training. It also describes the application and benefits of ANN.
Artificial Neural Network : A Brief Overview
2014
Artificial Neural Network (ANN) is an information processing paradigm that is inspired by the way biological nervous systems, such as the brain, process information. The key element of this paradigm is the novel structure of the information processing system. Neural networks, have remarkable ability to derive meaning from complicated or imprecise data, can be used to extract patterns and detect trends that are too complex to be noticed by either humans or other computer techniques. A trained neural network can be thought of as an "expert" in the category of information it has been given to analyze. This expert can then be used to provide projections given new situations of interest and answer "what if" questions. so in this paper we tried to introduce a brief overview of ANN to help researchers in their way throw ANN.
IJERT-Evaluation of Artificial Neural Networks
International Journal of Engineering Research and Technology (IJERT), 2014
https://www.ijert.org/evaluation-of-artificial-neural-networks https://www.ijert.org/research/evaluation-of-artificial-neural-networks-IJERTV1IS7004.pdf Artificial Neural Networks are composed of interconnecting artificial neurons (programming constructs that mimic the properties of biological neurons). Artificial neural networks may either be used to gain an understanding of biological neural networks, or for solving artificial intelligence problems without necessarily creating a model of a real biological system. Artificial Neural Network has been shown to be an efficient tool for non-parametric modeling of data in a variety of different context where the output is non-linear function of prediction, medicines, pattern recognition and image processing. 1. In this paper we present neural network architecture for learning of robotic grasping tasks. Systematic computer simulations have been carried out in order to test learning and generalization capabilities of the system. The proposed model can be used as a high level controller for a robotic dexterous hand during learning and execution of grasping tasks. 2. Diagnosis of diseases is well known problem in the medical field. Past research shows that medical database of disease can be train by using various neural network models. Many medical problems face the problem of curse of dimensionality due to the excessively large number of input attributes. Breast cancer is one such problem. Breast cancer is the second leading cause of cancer deaths worldwide and occurs in one out of eight women. In this paper we develop a system for diagnosis, prognosis and prediction of breast cancer using Artificial Neural Network (ANN) models. 2. Introduction Artificial neural networks are a computational tool, based on the properties of biological neural systems. Neural networks excel in a number of problem areas where conventional von Neumann computer systems have traditionally been slow and inefficient. This book is going to discuss the creation and use of artificial neural networks.Over the last few years, a number of studies were reported concerning machine learning, and how it has been applied to help robots to improve their operational capabilities. Robots must be able to understand the structure of this environment. To reach their targets without collisions, the robots must be endowed with perception, data processing, recognition, learning, reasoning, interpreting, and decision-making and action capacities. The ability to acquire these faculties to treat and transmit knowledge constitutes the key of a certain kind of artificial intelligence. Reproduce this kind of intelligence is, up to now, a human ambition in the construction and development of intelligent machines, and particularly autonomous mobile robots. An Artificial Neural Network (ANN), usually called neural network (NN), is a mathematical model or computational model that is inspired by the structure and/or functional aspects of biological neural networks. A neural network consists of an interconnected group of artificial neurons, and it processes information using a connectionist approach to computation. In most cases an ANN is an adaptive system that changes its structure based on external or internal information that flows through the network
A STUDY ON ARTIFICIAL NEURAL NETWORKS
A STUDY, 2018
First step towards AI is taken by Warren McCulloch a neurophysist and a mathematician Walter Pitts. They modelled a simple neural network with electrical circuits and got the results very accurate and derived a remarkable ability of neurons to perceive information from complicated and imprecise data. During the present study it was observed that trained neural network expert in analyzing the information has been provided with other advantages as Adaptive learning, Real Time operation, self-organization and Fault tolerance as well. Apart from convectional computing, neural networking use different processing units (Neurons) in parallel with each other. These need not to be programmed. They function just like human brain. We need to give it examples to solve different problems and these examples must be selected carefully so that it would not be waste of time.we use combination of neural networking and computational programming to achieve maximal efficiency right now but neural networking will eventually take over in future. We introduced artificial neural networking in which electronic models where used as neural structure of brain. Computers can store data as ledgers etc. but have difficulty in recognizing patterns but brain stores information as patterns. Further as artificial neural networking was introduced which has artificial neurons who act as real neurons and do functions as they do. They are used for speech, hearing, reorganization, storing information as patterns and many other functions which a human brain can do. These neural networks were combined and dynamically self-combined which is not true for any artificial networking. These neurons work as groups and sub divide the problem to resolve it. These are grouped in layers and it is art of engineering to make them solve real world problems. The most important thing is the connections between the neurons, it is glue to system as it is excitation inhibition process as the input remains constant one neuron excites while other inhibits as in subtraction addition process. Basically, all ANN have same network that is input, feedback or hidden and output.
An Overview on Neural Network and Its Application
IJRASET, 2021
In this paper an overview on neural network and its application is focused. In Real-world business applications for neural networks are booming. In some cases, NNs have already become the method of choice for businesses that use hedge fund analytics, marketing segmentation, and fraud detection. Here are some neural network innovators who are changing the business landscape. Here shown that how the biological model of neural network functions, all mammalian brains consist of interconnected neurons that transmit electrochemical signals. Neurons have several components: the body, which includes a nucleus and dendrites; axons, which connect to other cells; and axon terminals or synapses, which transmit information or stimuli from one neuron to another. Combined, this unit carries out communication and integration functions in the nervous system.
" Neural Network " a Supervised Machine Learning Algorithm
As a machine learning algorithm, neural network has been widely used in various research projects to solve various critical problems. The concept of neural networks is inspired from the human brain. The paper will explain the actual concept of Neural Networks such that a non-skilled person can understand basic concept and also make use of this algorithm to solve various tedious and complex problems. The paper demonstrates the designing and implementation of fully design Neural Network along with the codes. It gives various architectures of ANN also the advantages, disadvantages & applications.
An Artificial Neural Network (ANN) is an information processing paradigm that is inspired by the way biological nervous systems, such as the brain, process information. The key element of this paradigm is the novel structure of the information processing system. It is composed of a large number of highly interconnected processing elements (neurons) working in unison to solve specific problems. ANNs, like people, learn by example. An ANN is configured for a specific application, such as pattern recognition or data classification, through a learning process. Learning in biological systems involves adjustments to the synaptic connections that exist between the neurons. This is true of ANNs as well. This paper gives overview of Artificial Neural Network, working & training of ANN. It also explain the application and advantages of ANN
Basic Application and Study of Artificial Neural Networks
In this paper, we are expounding Artificial Neural Network or ANN, its different qualities and business applications. In this paper we additionally demonstrate that "what are neural systems" and "Why they are so essential in today's Artificial knowledge?" Because various advances have been made in creating Intelligent framework, some roused by natural neural systems. ANN gives an exceptionally energizing choices and other application which can assume imperative part in today's software, Computer engineering field. There are a few Limitations likewise which are said. An Artificial Neural Network (ANN) is a data handling worldview that is motivated by the way natural sensory systems, for example, the mind, prepare data. The key component of this worldview is the novel structure of the data preparing framework. It is made out of an extensive number of exceptionally interconnected handling components (neurons) working as one to take care of particular issues. ANNs, similar to individuals, learn by illustration. An ANN is designed for a particular application, for example, design acknowledgment or information arrangement, through a learning procedure. Learning in natural frameworks includes conformity to the synaptic associations that exist between the neurons. This is valid for ANNs too. This paper gives outline of Artificial Neural Network, working and preparing of ANN. It additionally clarifies the application and points of interest of ANN.