Word-order typology in Multilingual BERT: A case study in subordinate-clause detection (original) (raw)

BERT4SO: Neural Sentence Ordering by Fine-tuning BERT

2021

Sentence ordering aims to arrange the sentences of a given text in the correct order. Recent work frames it as a ranking problem and applies deep neural networks to it. In this work, we propose a new method, named BERT4SO, by fine-tuning BERT for sentence ordering. We concatenate all sentences and compute their representations by using multiple special tokens and carefully designed segment (interval) embeddings. The tokens across multiple sentences can attend to each other which greatly enhances their interactions. We also propose a margin-based listwise ranking loss based on ListMLE to facilitate the optimization process. Experimental results on five benchmark datasets demonstrate the effectiveness of our proposed method.

Do Attention Heads in BERT Track Syntactic Dependencies?

ArXiv, 2019

We investigate the extent to which individual attention heads in pretrained transformer language models, such as BERT and RoBERTa, implicitly capture syntactic dependency relations. We employ two methods---taking the maximum attention weight and computing the maximum spanning tree---to extract implicit dependency relations from the attention weights of each layer/head, and compare them to the ground-truth Universal Dependency (UD) trees. We show that, for some UD relation types, there exist heads that can recover the dependency type significantly better than baselines on parsed English text, suggesting that some self-attention heads act as a proxy for syntactic structure. We also analyze BERT fine-tuned on two datasets---the syntax-oriented CoLA and the semantics-oriented MNLI---to investigate whether fine-tuning affects the patterns of their self-attention, but we do not observe substantial differences in the overall dependency relations extracted using our methods. Our results sug...

Morphosyntactic probing of multilingual BERT models

Natural Language Engineering

We introduce an extensive dataset for multilingual probing of morphological information in language models (247 tasks across 42 languages from 10 families), each consisting of a sentence with a target word and a morphological tag as the desired label, derived from the Universal Dependencies treebanks. We find that pre-trained Transformer models (mBERT and XLM-RoBERTa) learn features that attain strong performance across these tasks. We then apply two methods to locate, for each probing task, where the disambiguating information resides in the input. The first is a new perturbation method that “masks” various parts of context; the second is the classical method of Shapley values. The most intriguing finding that emerges is a strong tendency for the preceding context to hold more information relevant to the prediction than the following context.

What Does BERT Learn about the Structure of Language?

Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics

BERT is a recent language representation model that has surprisingly performed well in diverse language understanding benchmarks. This result indicates the possibility that BERT networks capture structural information about language. In this work, we provide novel support for this claim by performing a series of experiments to unpack the elements of English language structure learned by BERT. We first show that BERT's phrasal representation captures phrase-level information in the lower layers. We also show that BERT's intermediate layers encode a rich hierarchy of linguistic information, with surface features at the bottom, syntactic features in the middle and semantic features at the top. BERT turns out to require deeper layers when long-distance dependency information is required, e.g. to track subjectverb agreement. Finally, we show that BERT representations capture linguistic information in a compositional way that mimics classical, tree-like structures.

Does BERT really agree ? Fine-grained Analysis of Lexical Dependence on a Syntactic Task

Findings of the Association for Computational Linguistics: ACL 2022

Although transformer-based Neural Language Models demonstrate impressive performance on a variety of tasks, their generalization abilities are not well understood. They have been shown to perform strongly on subject-verb number agreement in a wide array of settings, suggesting that they learned to track syntactic dependencies during their training even without explicit supervision. In this paper, we examine the extent to which BERT is able to perform lexically-independent subject-verb number agreement (NA) on targeted syntactic templates. To do so, we disrupt the lexical patterns found in naturally occurring stimuli for each targeted structure in a novel fine-grained analysis of BERT's behavior. Our results on nonce sentences suggest that the model generalizes well for simple templates, but fails to perform lexically-independent syntactic generalization when as little as one attractor is present.

Parsing with Multilingual BERT, a Small Corpus, and a Small Treebank

Findings of the Association for Computational Linguistics: EMNLP 2020

Pretrained multilingual contextual representations have shown great success, but due to the limits of their pretraining data, their benefits do not apply equally to all language varieties. This presents a challenge for language varieties unfamiliar to these models, whose labeled and unlabeled data is too limited to train a monolingual model effectively. We propose the use of additional language-specific pretraining and vocabulary augmentation to adapt multilingual models to low-resource settings. Using dependency parsing of four diverse lowresource language varieties as a case study, we show that these methods significantly improve performance over baselines, especially in the lowest-resource cases, and demonstrate the importance of the relationship between such models' pretraining data and target language varieties.

Improving Cross-Lingual Transfer through Subtree-Aware Word Reordering

Findings of EMNLP, 2023

Despite the impressive growth of the abilities of multilingual language models, such as XLM-R and mT5, it has been shown that they still face difficulties when tackling typologically-distant languages, particularly in the low-resource setting. One obstacle for effective cross-lingual transfer is variability in word-order patterns. It can be potentially mitigated via source-or target-side word reordering, and numerous approaches to reordering have been proposed. However, they rely on language-specific rules, work on the level of POS tags, or only target the main clause, leaving subordinate clauses intact. To address these limitations, we present a new powerful reordering method, defined in terms of Universal Dependencies, that is able to learn fine-grained word-order patterns conditioned on the syntactic context from a small amount of annotated data and can be applied at all levels of the syntactic tree. We conduct experiments on a diverse set of tasks and show that our method consistently outperforms strong baselines over different language pairs and model architectures. This performance advantage holds true in both zero-shot and few-shot scenarios.

GiBERT: Enhancing BERT with Linguistic Information using a Lightweight Gated Injection Method

Findings of the Association for Computational Linguistics: EMNLP 2021, 2021

Large pre-trained language models such as BERT have been the driving force behind recent improvements across many NLP tasks. However, BERT is only trained to predict missing words-either through masking or next sentence prediction-and has no knowledge of lexical, syntactic or semantic information beyond what it picks up through unsupervised pre-training. We propose a novel method to explicitly inject linguistic information in the form of word embeddings into any layer of a pre-trained BERT. When injecting counter-fitted and dependency-based embeddings, the performance improvements on multiple semantic similarity datasets indicate that such information is beneficial and currently missing from the original model. Our qualitative analysis shows that counter-fitted embedding injection is particularly beneficial, with notable improvements on examples that require synonym resolution.

The heads hypothesis: A unifying statistical approach towards understanding multi-headed attention in BERT

2021

Multi-headed attention heads are a mainstay in transformerbased models. Different methods have been proposed to classify the role of each attention head based on the relations between tokens which have high pair-wise attention. These roles include syntactic (tokens with some syntactic relation), local (nearby tokens), block (tokens in the same sentence) and delimiter (the special [CLS], [SEP] tokens). There are two main challenges with existing methods for classification: (a) there are no standard scores across studies or across functional roles, and (b) these scores are often average quantities measured across sentences without capturing statistical significance. In this work, we formalize a simple yet effective score that generalizes to all the roles of attention heads and employs hypothesis testing on this score for robust inference. This provides us the right lens to systematically analyze attention heads and confidently comment on many commonly posed questions on analyzing the ...

Exploring Multilingual Syntactic Sentence Representations

Proceedings of the 5th Workshop on Noisy User-generated Text (W-NUT 2019)

We study methods for learning sentence embeddings with syntactic structure. We focus on methods of learning syntactic sentenceembeddings by using a multilingual parallelcorpus augmented by Universal Parts-of-Speech tags. We evaluate the quality of the learned embeddings by examining sentencelevel nearest neighbours and functional dissimilarity in the embedding space. We also evaluate the ability of the method to learn syntactic sentence-embeddings for low-resource languages and demonstrate strong evidence for transfer learning. Our results show that syntactic sentence-embeddings can be learned while using less training data, fewer model parameters, and resulting in better evaluation metrics than state-of-the-art language models.