The Relationship between oxidative stress and the functional capacity of skeletal muscle (original) (raw)
Related papers
Relationship between Human Aging Muscle and Oxidative System Pathway
Ageing is a complex process that in muscle is usually associated with a decrease in mass, strength, and velocity of contraction. One of the most striking effects of ageing on muscle is known as sarcopenia. This inevitable biological process is characterized by a general decline in the physiological and biochemical functions of the major systems. At the cellular level, aging is caused by a progressive decline in mitochondrial function that results in the accumulation of reactive oxygen species (ROS) generated by the addition of a single electron to the oxygen molecule. The aging process is characterized by an imbalance between an increase in the production of reactive oxygen species in the organism and the antioxidant defences as a whole. The goal of this review is to examine the results of existing studies on oxidative stress in aging human skeletal muscles, taking into account different physiological factors (sex, fibre composition, muscle type, and function).
Oxidative system in aged skeletal muscle
Muscles, ligaments and tendons journal, 2011
Aging is an inevitable biological process that is characterized by a general decline in the physiological and biochemical functions of the major systems. In the case of the neuromuscular system, reductions in strength and mobility cause a deterioration in motor performance, impaired mobility and disability. At the cellular level, aging is caused by a progressive decline in mitochondrial function that results in the accumulation of reactive oxygen species (ROS). As the level of oxidative stress in skeletal muscle increases with age, the age-process is characterized by an imbalance between an increase in ROS production in the organism, and antioxidant defences as a whole. We have reviewed the literature on oxidative stress in aging human skeletal muscles, and to assesss the impact of differences in physiological factors (sex, fiber composition, muscle type and function).
Doria et al. Review - Human aging muscle and oxidative system pathway
Ageing is a complex process that in muscle is usually associated with a decrease in mass, strength, and velocity of contraction. One of the most striking effects of ageing on muscle is known as sarcopenia. This inevitable biological process is characterized by a general decline in the physiological and biochemical functions of the major systems. At the cellular level, aging is caused by a progressive decline in mitochondrial function that results in the accumulation of reactive oxygen species (ROS) generated by the addition of a single electron to the oxygen molecule. The aging process is characterized by an imbalance between an increase in the production of reactive oxygen species in the organism and the antioxidant defences as a whole. The goal of this review is to examine the results of existing studies on oxidative stress in aging human skeletal muscles, taking into account different physiological factors (sex, fibre composition, muscle type, and function).
Age and sex influence on oxidative damage and functional status in human skeletal muscle
Journal of muscle research and cell motility, 2001
A reduction in muscle mass, with consequent decrease in strength and resistance, is commonly observed with advancing age. In this study we measured markers of oxidative damage to DNA, lipids and proteins, some antioxidant enzyme activities as well Ca2+ transport in sarcoplasmic reticulum membranes in muscle biopsies from vastus lateralis of young and elderly healthy subjects of both sexes in order to evaluate the presence of age- and sex-related differences. We found a significant increase in oxidation of DNA and lipids in the elderly group, more evident in males, and a reduction in catalase and glutathione transferase activities. The experiments on Ca2+ transport showed an abnormal functional response of aged muscle after exposure to caffeine, which increases the opening of Ca2+ channels, as well a reduced activity of the Ca2+ pump in elderly males. From these results we conclude that oxidative stress play an important role in muscle aging and that oxidative damage is much more evi...
Skeletal muscle aging: influence of oxidative stress and physical exercise
Oncotarget, 2017
Skeletal muscle abnormalities are responsible for significant disability in the elderly. Sarcopenia is the main alteration occurring during senescence and a key public health issue as it predicts frailty, poor quality of life, and mortality. Several factors such as reduced physical activity, hormonal changes, insulin resistance, genetic susceptibility, appetite loss, and nutritional deficiencies are involved in the physiopathology of muscle changes. Sarcopenia is characterized by structural, biochemical, molecular and functional muscle changes. An imbalance between anabolic and catabolic intracellular signaling pathways and an increase in oxidative stress both play important roles in muscle abnormalities. Currently, despite the discovery of new targets and development of new drugs, nonpharmacological therapies such as physical exercise and nutritional support are considered the basis for prevention and treatment of age-associated muscle abnormalities. There has been an increase in information on signaling pathways beneficially modulated by exercise; nonetheless, studies are needed to establish the best type, intensity, and frequency of exercise to prevent or treat age-induced skeletal muscle alterations.
Oxidative stress" and muscle aging: influence of age, sex, fiber composition and function
2003
Aim of this research was to study human muscle aging and the influence of oxidative stress correlated with physiological factors (age, sex, fiber composition and function) by measuring the antioxidant enzymes activities: total and mitochondrial superoxide dismutase (total and MnSOD), catalase (CAT), glutathione peroxidase(GSHPx) the levels of glutathione and glutathione disulfide (GSH and GSSG) and redox index. We also measured the lipid peroxide amount . As about age-related changes, we studied 120 samples (18-91 year-old) and we noted the presence of a correlation between age and ROS-mediated damages. Futhermore, it seems that 65 years could be the age at which ROS-dependent damage becomes crucial and begins to show up. Our data about sex-dependent changes showed how males may be potentially more vulnerable to oxidative damage than females. Study about fiber composition in old group (65-90 year-old) reported that subjects with +40% type II fibers not only have lipoperoxide levels ...
Sarcoplasmic reticulum in aged skeletal muscle
Acta Physiologica Scandinavica, 1999
A decrease in muscle mass and strength and a slowing of muscle contraction are common features of the ageing process. Recent advances in basic biochemical knowledge have provided new insights into pathogenetic mechanisms underlying age-related changes in the excitation±contraction coupling process, Ca 2+-transients and isometric twitch-contraction time. Sarcoplasmic reticulum (SR) Ca 2+pumps are not basically altered in physiological ageing, but several aspects of the Ca 2+-transport system remain controversial, regarding phosphorylation-dependent regulation in slow-twitch muscles, in particular. It seems that con¯icting reports and divergent interpretations concerning the effect of ageing on SR Ca 2+-release arise from the type of muscle, the stage of the ageing process and the animal species. A cause±effect relationship between the decrease in dihydropyridine receptors and in muscle strength is strongly suggested by studies in transgenic mice, but is unsupported by our studies with fast-twitch and slow-twitch muscles of old rats. Our experimental evidence also seems to exclude the occurrence of age-related changes in the number and in the functional behaviour of Ca 2+-release channels/ryanodine receptors (RyR1), based on [3H]-ryanodine binding studies. There is emerging, although only suggestive evidence, so far, that modulation of RyR1 by SR luminal protein calsequestrin, or the functional coupling of RyRs by FKBP-12, may be altered in ageing skeletal muscle.
Ageing: effects on oxidative function of skeletal muscle in vivo
Molecular and cellular biochemistry, 1997
31P magnetic resonance spectroscopy studies were carried out on calf muscle of 144 normal male and female subjects age 20-83 years in order to investigate age-related changes in muscle metabolism. Compared to the young adults (20-29 years), oxidative capacity was higher in the children (6-12 years) and was significantly decreased in the elderly (70-83 years). In the adults, the intracellular pH change during exercise diminished with increasing age, resulting in higher calculated free [ADP] and possibly serving as an adaptive mechanism to stimulate mitochondrial ATP production. Children also had higher pH and [ADP] in exercise, but unlike results from the elderly, this was associated with higher oxidative capacity and more rapid metabolic recovery from exercise.
Changes in Redox Signaling in the Skeletal Muscle with Aging
Oxidative Medicine and Cellular Longevity, 2019
Reduction in muscle strength with aging is due to both loss of muscle mass (quantity) and intrinsic force production (quality). Along with decreased functional capacity of the muscle, age-related muscle loss is associated with corresponding comorbidities and healthcare costs. Mitochondrial dysfunction and increased oxidative stress are the central driving forces for age-related skeletal muscle abnormalities. The increased oxidative stress in the aged muscle can lead to altered excitation-contraction coupling and calcium homeostasis. Furthermore, apoptosis-mediated fiber loss, atrophy of the remaining fibers, dysfunction of the satellite cells (muscle stem cells), and concomitant impaired muscle regeneration are also the consequences of increased oxidative stress, leading to a decrease in muscle mass, strength, and function of the aged muscle. Here we summarize the possible effects of oxidative stress in the aged muscle and the benefits of physical activity and antioxidant therapy.
Reduced oxidative power but unchanged antioxidative capacity in skeletal muscle from aged humans
Pflügers Archiv : European journal of physiology, 2003
The hypothesis that the aging process is associated with mitochondrial dysfunction and oxidative stress has been investigated in human skeletal muscle. Muscle biopsy samples were taken from seven old male subjects [OS; 75 (range 61-86) years] and eight young male subjects [YS; 25 (22-31) years]. Oxidative function was measured both in permeabilised muscle fibres and isolated mitochondria. Despite matching the degree of physical activity, OS had a lower training status than YS as judged from pulmonary maximal O(2) consumption ( Vdot;O(2)max, -36%) and handgrip strength (-20%). Both maximal respiration and creatine-stimulated respiration were reduced in muscle fibres from OS (-32 and -34%, respectively). In contrast, respiration in isolated mitochondria was similar in OS and YS. The discrepancy might be explained by a biased harvest of "healthy" mitochondria and/or disruption of structural components during the process of isolation. Cytochrome C oxidase was reduced (-40%, P&...