Machine Learning Models for Image-Based Diagnosis and Prognosis of COVID-19: Systematic Review (original) (raw)
Related papers
Nature Machine Intelligence, 2021
Machine learning methods offer great promise for fast and accurate detection and prognostication of coronavirus disease 2019 (COVID-19) from standard-of-care chest radiographs (CXR) and chest computed tomography (CT) images. Many articles have been published in 2020 describing new machine learning-based models for both of these tasks, but it is unclear which are of potential clinical utility. In this systematic review, we consider all published papers and preprints, for the period from 1 January 2020 to 3 October 2020, which describe new machine learning models for the diagnosis or prognosis of COVID-19 from CXR or CT images. All manuscripts uploaded to bioRxiv, medRxiv and arXiv along with all entries in EMBASE and MEDLINE in this timeframe are considered. Our search identified 2,212 studies, of which 415 were included after initial screening and, after quality screening, 62 studies were included in this systematic review. Our review finds that none of the models identified are of ...
Machine learning approaches for COVID-19 detection from chest X-ray imaging: A Systematic Review
arXiv (Cornell University), 2022
There is a necessity to develop affordable, and reliable diagnostic tools, which allow containing the COVID-19 spreading. Machine Learning (ML) algorithms have been proposed to design support decision-making systems to assess chest X-ray images, which have proven to be useful to detect and evaluate disease progression. Many research articles are published around this subject, which makes it difficult to identify the best approaches for future work. This paper presents a systematic review of ML applied to COVID-19 detection using chest X-ray images, aiming to offer a baseline for researchers in terms of methods, architectures, databases, and current limitations.
Avicenna Journal of Medical Biochemistry, 2020
Background: In this study, the artificial intelligence (AI) techniques used for the detection of coronavirus disease 2019 (COVID-19) from the chest x-ray were reviewed. Methods: PubMed, arXiv, and Google Scholar were used to search for AI studies. Results: A total of 20 papers were extracted from Google Scholar, 14 from arXiv, and 5 from PubMed. In 17 papers, publicly available datasets and in 3 papers, independent datasets were used. 10 papers disclosed source codes. Nine papers were about creating a novel AI software, 8 papers reported the modification of the existing AI models, and 3 compared the performance of the existing AI software programs. All papers have used deep learning as AI technique. Most papers reported accuracy, specificity, and sensitivity of the models, and also the area under the curve (AUC) for investigation of the model performance for the prediction of COVID-19. Nine papers reported accuracy, sensitivity, and specificity. The number of datasets used in the st...
2020
BACKGROUND Most of the mortality resulting from COVID-19 has been associated with severe disease. Effective treatment of severe cases remains a challenge due to the lack of early detection of the infection. OBJECTIVE This study aimed to develop an effective prediction model for COVID-19 severity by combining radiological outcome with clinical biochemical indexes. METHODS A total of 46 patients with COVID-19 (10 severe, 36 nonsevere) were examined. To build the prediction model, a set of 27 severe and 151 nonsevere clinical laboratory records and computerized tomography (CT) records were collected from these patients. We managed to extract specific features from the patients’ CT images by using a recently published convolutional neural network. We also trained a machine learning model combining these features with clinical laboratory results. RESULTS We present a prediction model combining patients’ radiological outcomes with their clinical biochemical indexes to identify severe COVI...
2022
This systematic review focuses on using artificial intelligence (AI) to detect COVID-19 infection with the help of X-ray images. Methodology: In January 2022, the authors searched PubMed, Embase and Scopus using specific medical subject headings terms and filters. All articles were independently reviewed by two reviewers. All conflicts resulting from a misunderstanding were resolved by a third independent researcher. After assessing abstracts and article usefulness, eliminating repetitions and applying inclusion and exclusion criteria, six studies were found to be qualified for this study. Results: The findings from individual studies differed due to the various approaches of the authors. Sensitivity was 72.59%-100%, specificity was 79%-99.9%, precision was 74.74%-98.7%, accuracy was 76.18%-99.81%, and the area under the curve was 95.24%-97.7%. Conclusion: AI computational models used to assess chest X-rays in the process of diagnosing COVID-19 should achieve sufficiently high sensitivity and specificity. Their results and performance should be repeatable to make them dependable for clinicians. Moreover, these additional diagnostic tools should be more affordable and faster than the currently available procedures. The performance and calculations of AI-based systems should take clinical data into account. Keywords: artificial intelligence, COVID-19, chest X-rays, convolutional neural network, diagnostic imaging
European Radiology Experimental
Background We aimed to train and test a deep learning classifier to support the diagnosis of coronavirus disease 2019 (COVID-19) using chest x-ray (CXR) on a cohort of subjects from two hospitals in Lombardy, Italy. Methods We used for training and validation an ensemble of ten convolutional neural networks (CNNs) with mainly bedside CXRs of 250 COVID-19 and 250 non-COVID-19 subjects from two hospitals (Centres 1 and 2). We then tested such system on bedside CXRs of an independent group of 110 patients (74 COVID-19, 36 non-COVID-19) from one of the two hospitals. A retrospective reading was performed by two radiologists in the absence of any clinical information, with the aim to differentiate COVID-19 from non-COVID-19 patients. Real-time polymerase chain reaction served as the reference standard. Results At 10-fold cross-validation, our deep learning model classified COVID-19 and non-COVID-19 patients with 0.78 sensitivity (95% confidence interval [CI] 0.74–0.81), 0.82 specificity ...
European Radiology
Objectives While chest radiograph (CXR) is the first-line imaging investigation in patients with respiratory symptoms, differentiating COVID-19 from other respiratory infections on CXR remains challenging. We developed and validated an AI system for COVID-19 detection on presenting CXR. Methods A deep learning model (RadGenX), trained on 168,850 CXRs, was validated on a large international test set of presenting CXRs of symptomatic patients from 9 study sites (US, Italy, and Hong Kong SAR) and 2 public datasets from the US and Europe. Performance was measured by area under the receiver operator characteristic curve (AUC). Bootstrapped simulations were performed to assess performance across a range of potential COVID-19 disease prevalence values (3.33 to 33.3%). Comparison against international radiologists was performed on an independent test set of 852 cases. Results RadGenX achieved an AUC of 0.89 on 4-fold cross-validation and an AUC of 0.79 (95%CI 0.78-0.80) on an independent test cohort of 5,894 patients. Delong's test showed statistical differences in model performance across patients from different regions (p < 0.01), disease severity (p < 0.001), gender (p < 0.001), and age (p = 0.03). Prevalence simulations showed the negative predictive value increases from 86.1% at 33.3% prevalence, to greater than 98.5% at any prevalence below 4.5%. Compared with radiologists, McNemar's test showed the model has higher sensitivity (p < 0.001) but lower specificity (p < 0.001). Conclusion An AI model that predicts COVID-19 infection on CXR in symptomatic patients was validated on a large international cohort providing valuable context on testing and performance expectations for AI systems that perform COVID-19 prediction on CXR. Key Points • An AI model developed using CXRs to detect COVID-19 was validated in a large multi-center cohort of 5,894 patients from 9 prospectively recruited sites and 2 public datasets. • Differences in AI model performance were seen across region, disease severity, gender, and age. • Prevalence simulations on the international test set demonstrate the model's NPV is greater than 98.5% at any prevalence below 4.5%.
Environmental Science and Pollution Research
As the whole world is witnessing what novel coronavirus (COVID-19) can do to the mankind, it presents several unique features also. In the absence of specific vaccine for COVID-19, it is essential to detect the disease at an early stage and isolate an infected patient. Till today there is a global shortage of testing labs and testing kits for COVID-19. This paper discusses about the role of machine learning techniques for getting important insights like whether lung computed tomography (CT) scan should be the first screening/alternative test for real-time reverse transcriptase-polymerase chain reaction (RT-PCR), is COVID-19 pneumonia different from other viral pneumonia and if yes how to distinguish it using lung CT scan images from the carefully selected data of lung CT scan COVID-19-infected patients from the hospitals of Italy, China, Moscow and India? For training and testing the proposed system, custom vision software of Microsoft azure based on machine learning techniques is used. An overall accuracy of almost 91% is achieved for COVID-19 classification using the proposed methodology.
arXiv (Cornell University), 2022
To answer the long-standing question of whether a model trained from a single clinical site can be generalized to external sites. Materials and Methods 17,537 chest x-ray radiographs (CXRs) from 3,264 COVID-19-positive patients and 4,802 COVID-19-negative patients were collected from a single site for AI model development. The generalizability of the trained model was retrospectively evaluated using four different real-world clinical datasets with a total of 26,633 CXRs from 15,097 patients (3,277 COVID-19-positive patients). The area under the receiver operating characteristic curve (AUC) was used to assess diagnostic performance. Results The AI model trained using a single-source clinical dataset achieved an AUC of 0.82 (95% CI: 0.80, 0.84) when applied to the internal temporal test set. When applied to datasets from two external clinical sites, an AUC of 0.81 (95% CI: 0.80, 0.82) and 0.82 (95% CI: 0.80, 0.84) were achieved. An AUC of 0.79 (95% CI: 0.77, 0.81) was achieved when applied to a multi-institutional COVID-19 dataset collected by the Medical Imaging and Data Resource Center (MIDRC). A power-law dependence, (is empirically found to be-0.21 to-0.25), indicates a relatively weak performance dependence on the training data sizes. Conclusion COVID-19 classification AI model trained using well-curated data from a single clinical site is generalizable to external clinical sites without a significant drop in performance. Summary AI model trained using properly curated, the single-source dataset is generalizable to external sites for the classification of COVID-19 using CXRs, and performance is only weakly dependent on the sample size of the training data. Key Points A COVID-19 chest x-ray classification model trained using data from a single clinical site demonstrated generalization to external test cohorts, with an AUC range of 0.79-0.82. The model's performance has a weak power-law relationship with the training data size, , with the exponent k ranging from-0.21 to-0.25. Small training datasets (~100 patients) can be used to develop a baseline AI model with good initial performance, suggesting the importance of data quality over data size in medical AI model development for this application. Abbreviations AI: artificial intelligence AUC: area under the receiver operating characteristic curve COVID-19: coronavirus disease 2019 CXR: chest x-ray radiograph RT-PCR: reverse transcriptase polymerase chain reaction
A survey of machine learning techniques for detecting and diagnosing COVID-19 from imaging
Quantitative Biology
Background: Due to the limited availability and high cost of the reverse transcription-polymerase chain reaction (RT-PCR) test, many studies have proposed machine learning techniques for detecting COVID-19 from medical imaging. The purpose of this study is to systematically review, assess and synthesize research articles that have used different machine learning techniques to detect and diagnose COVID-19 from chest X-ray and CT scan images. Methods: A structured literature search was conducted in the relevant bibliographic databases to ensure that the survey solely centered on reproducible and high-quality research. We selected papers based on our inclusion criteria. Results: In this survey, we reviewed 98 articles that fulfilled our inclusion criteria. We have surveyed a complete pipeline of chest imaging analysis techniques related to COVID-19, including data collection, pre-processing, feature extraction, classification, and visualization. We have considered CT scans and X-rays as both are widely used to describe the latest developments in medical imaging to detect COVID-19. Conclusions: This survey provides researchers with valuable insights into different machine learning techniques and their performance in the detection and diagnosis of COVID-19 from chest imaging. At the end, the challenges and limitations in detecting COVID-19 using machine learning techniques and the future direction of research are discussed.