Web-based tools for the visualisation of over-represented components of the Genetic Regulatory Network in microarray datasets (original) (raw)
Related papers
Interactive visual analysis of time-series microarray data
The Visual Computer, 2008
Estimating dynamic regulatory pathways using DNA microarray time-series can provide invaluable information about the dynamic interactions among genes and result in new methods of rational drug design. Even though several purely computational methods have been introduced for DNA pathway analysis, most of these techniques do not provide a fully interactive method to explore and analyze these dynamic interactions in detail, which is necessary to obtain a full understanding. In this paper, we present a unified modeling and visual approach focusing on visual analysis of gene regulatory pathways over time. As a preliminary step in analyzing the gene interactions, the method applies two different techniques, a clustering algorithm and an Auto Regressive (AR) model. This approach provides a successful prediction of the dynamic pathways involved in the biological process under study. At this level, these pure computational techniques lack the transparency required for analysis and understanding of the gene interactions. To overcome the limitations, we have designed a visual analysis method that applies several visualization techniques, including pixel-based gene representation, animation, and multi-dimensional scaling (MDS), in a new way. This visual analysis framework allows the user to quickly and thoroughly search for and find the dynamic interactions among genes, highlight interesting gene information, show the detailed annotations of the selected genes, compare regulatory behaviors for different genes, and support gene sequence analysis for the interesting genes. In order to enhance these analysis capabilities, several methods are enabled, providing a simple graph display, a pixel-based gene visualization technique, and a relation-displaying technique among gene expressions and gene regulatory pathways.
Visualization of microarray results to assist interpretation
2004
Whole genome microarrays allow assessment of the profile of genes expressed under particular experimental conditions, including external stimuli such as pH or temperature, and internal changes brought about by deleting or over-expressing a gene. Such experiments produce large data sets, for which sophisticated analysis software is available. What is lacking are tools for analysing data sets from different experiments, in order to test and generate hypotheses about the links between regulatory networks.
A Visual Data Mining Tool that Facilitates Reconstruction of Transcription Regulatory Networks
PLOS One, 2008
Background: Although the use of microarray technology has seen exponential growth, analysis of microarray data remains a challenge to many investigators. One difficulty lies in the interpretation of a list of differentially expressed genes, or in how to plan new experiments given that knowledge. Clustering methods can be used to identify groups of genes with similar expression patterns, and genes with unknown function can be provisionally annotated based on the concept of ''guilt by association'', where function is tentatively inferred from the known functions of genes with similar expression patterns. These methods frequently suffer from two limitations: (1) visualization usually only gives access to group membership, rather than specific information about nearest neighbors, and (2) the resolution or quality of the relationships are not easily inferred.
Visualizing Genome Expression and Regulatory Network Dynamics in Genomic and Metabolic Context
Computer Graphics Forum, 2008
DNA microarrays are used to measure the expression levels of thousands of genes simultaneously. In a time series experiment, the gene expressions are measured as a function of time. We present an application for integrated visualization of genome expression and network dynamics in both regulatory networks and metabolic pathways. Integration of these two levels of cellular processes is necessary, since it provides the link between the measurements at the transcriptional level (gene expression levels approximated from microarray data) and the phenotype (the observable characteristics of an organism) at the functional and behavioral level. The integration requires visualization approaches besides traditional clustering and statistical analysis methods. Our application can (i) visualize the data from time series experiments in the context of a regulatory network and KEGG metabolic pathways; (ii) identify and visualize active regulatory subnetworks from the gene expression data; (iii) perform a statistical test to identify and subsequently visualize pathways that are affected by differentially expressed genes. We present a case study, which demonstrates that our approach and application both facilitates and speeds up data analysis tremendously in comparison to a more traditional approach that involves many manual, laborious, and error-prone steps.
GeneXplorer: an interactive web application for microarray data visualization and analysis
2004
Background When publishing large-scale microarray datasets, it is of great value to create supplemental websites where either the full data, or selected subsets corresponding to figures within the paper, can be browsed. We set out to create a CGI application containing many of the features of some of the existing standalone software for the visualization of clustered microarray data. Results We present GeneXplorer, a web application for interactive microarray data visualization and analysis in a web environment.
Understanding Gene Regulatory Network (GRN) is considered to be the fundamental approach to many biological questions, and the input dataset performs a crucial role in investigating and visualizing the gene regulatory network ] have recently been developed for GRN inference, where some are designed for a particular dataset, an organism or a particular diseased cell. The questions that prompted this review are; what is (are) the kind of omic data needed to construct a GRN? Is there any peculiar property attached to a GRN of a particular data? And, could there be an integration of data from various omic experiments in form of a knowledge base? The input dataset for GRN are transcriptome information which is analyzed comprehensively including the two major technologies (sources) that produce them. We consider four omic datasets and two of their sources for the purpose of this review. The biological data source technologies are hybridization-based, and sequence-based. Dataset from microarray and ChIP-Chip experiments are hybridization-based while RNA-seq and ChIP-seq are sequence-based. Software tools published on Omic Tool website (http://omictools.com/gene-regulatory-networks-c435-p1.html) are analyzed for this review. However, the major disparity is whether the dataset is ChIP-X (ChIP-Chip and ChIP-seq) or expression (Microarray and RNA-seq) dataset not whether the source is from hybridization-based or sequence-based. Moreover, ChIP-X dataset gives more opportunity to investigate more biological problems. The importance of gene regulatory network suggests a GRN software template, which contains all the additional data from ChIP-X experiment and a knowledge base of biological prior knowledge, including integration of data from different omic datasets as a single knowledge base.
Background: In the last decade, a large amount of microarray gene expression data has been accumulated in public repositories. Integrating and analyzing high-throughput gene expression data have become key activities for exploring gene functions, gene networks and biological pathways. Effectively utilizing these invaluable microarray data remains challenging due to a lack of powerful tools to integrate large-scale gene-expression information across diverse experiments and to search and visualize a large number of gene-expression data points. Results: Gene Expression Browser is a microarray data integration, management and processing system with webbased search and visualization functions. An innovative method has been developed to define a treatment over a control for every microarray experiment to standardize and make microarray data from different experiments homogeneous. In the browser, data are pre-processed offline and the resulting data points are visualized online with a 2-layer dynamic web display. Users can view all treatments over control that affect the expression of a selected gene via Gene View, and view all genes that change in a selected treatment over control via treatment over control View. Users can also check the changes of expression profiles of a set of either the treatments over control or genes via Slide View. In addition, the relationships between genes and treatments over control are computed according to gene expression ratio and are shown as co-responsive genes and co-regulation treatments over control.
Needs Assessment for Scientific Visualization of Multivariate, High-Dimensional Microarray Data
2006
The explosive growth in biological data (currently GenBank contains over 44 billion base pa irs and over 40 million sequences) mandates an increasi ng need for sophisticated mathematical and computational methods (1)and software environments capable of handling the complexities and sizes of these various "omic" datasets (2). This is particul arly true for microarray data. Microarray technolo gy allows for