In vitro Homeostatic Proliferation of Human CD8 T Cells (original) (raw)
Related papers
Epigenetic Maintenance of Acquired Gene Expression Programs during Memory CD8 T Cell Homeostasis
Frontiers in Immunology, 2018
Memory CD8 T cells have a unique ability to provide lifelong immunity against pathogens containing their cognate epitope. Because of their ability to provide lifelong protection, the generation of memory T cells is now a major focus for current vaccination or adoptive cell therapy approaches to treat chronic viral infections and cancer. It is now clear that maintenance of memory CD8 T cells occurs through a process of antigen-independent homeostatic proliferation, which is regulated in part by the gamma chain cytokines IL-7 and IL-15. Here, we will describe the role of these cytokines in the survival and self-renewal of memory CD8 T cells. Further, we will describe the role of epigenetics in the maintenance of acquired functions among memory CD8 T cells during homeostatic proliferation.
Human memory CD8 T cell effector potential is epigenetically preserved during in vivo homeostasis
The Journal of Experimental Medicine
Antigen-independent homeostasis of memory CD8 T cells is vital for sustaining long-lived T cell–mediated immunity. In this study, we report that maintenance of human memory CD8 T cell effector potential during in vitro and in vivo homeostatic proliferation is coupled to preservation of acquired DNA methylation programs. Whole-genome bisulfite sequencing of primary human naive, short-lived effector memory (T EM ), and longer-lived central memory (T CM ) and stem cell memory (T SCM ) CD8 T cells identified effector molecules with demethylated promoters and poised for expression. Effector-loci demethylation was heritably preserved during IL-7– and IL-15–mediated in vitro cell proliferation. Conversely, cytokine-driven proliferation of T CM and T SCM memory cells resulted in phenotypic conversion into T EM cells and was coupled to increased methylation of the CCR7 and Tcf7 loci. Furthermore, haploidentical donor memory CD8 T cells undergoing in vivo proliferation in lymphodepleted recip...
Generating long-lived CD8+T-cell memory: Insights from epigenetic programs
European Journal of Immunology, 2016
T cell based immunological memory has the potential to provide the host with lifelong protection against pathogen re-exposure and thus offers tremendous promise for the design of vaccines targeting chronic infections or cancer. In order to exploit this potential in the design of new vaccines it is necessary to understand how and when memory T cells acquire their poised effector potential, and moreover, how they maintain these properties during homeostatic proliferation. To gain insight into the persistent nature of memory T cell functions, investigators have turned their attention to epigenetic mechanisms. Recent efforts have revealed that many of the properties acquired among memory T cells are coupled to stable changes in DNA methylation and histone modifications. Furthermore, it has recently been reported that the delineating features among memory T cells subsets are also linked to distinct epigenetic events providing exciting new hypotheses regarding their cellular ancestry. Here we review recent studies focused on epigenetic programs acquired during effector and memory T cell differentiation and discuss how these data may shed new light on the developmental path for generating long-lived CD8 T cell memory.
Journal of Experimental Medicine, 2000
The developmental requirements for immunological memory, a central feature of adaptive immune responses, is largely obscure. We show that as naive CD8 T cells undergo homeostasis-driven proliferation in lymphopenic mice in the absence of overt antigenic stimulation, they progressively acquire phenotypic and functional characteristics of antigen-induced memory CD8 T cells. Thus, the homeostasis-induced memory CD8 T cells express typical memory cell markers, lyse target cells directly in vitro and in vivo, respond to lower doses of antigen than naive cells, and secrete interferon γ faster upon restimulation. Like antigen-induced memory T cell differentiation, the homeostasis-driven process requires T cell proliferation and, initially, the presence of appropriate restricting major histocompatibility complexes, but it differs by occurring without effector cell formation and without requiring interleukin 2 or costimulation via CD28. These findings define repetitive cell division plus T c...
Blood, 2008
The host responds to lymphopenic environments by acute homeostatic proliferation of T lymphocytes, which acquire phenotypes similar to memory cells. Using T-cell knockout (KO) mice adoptively reconstituted with splenocytes from immunologically naive mice, we examined the immune responses of an immune system derived from homeostatically proliferating (HP) T cells. HP cells mounted relatively normal acute CD8 T-cell responses to lymphocytic choriomeningitis virus (LCMV), but with altered T-cell receptor (TCR) repertoires, and they became functional memory cells capable of recall responses. Although homeostatic proliferation does not normally fully restore T-cell numbers, the CD8+ T-cell pool was completely restored in T-cell KO mice after LCMV infection. CD4 T-cell responses were lower and not fully restored but seemed sufficient to allow for complete differentiation of CD8 memory T cells. The LCMV-immune HP mouse had an immune repertoire heavily biased with LCMV epitope-specific T ce...
Nature Immunology, 2006
Antigen-specific memory T cells are a critical component of protective immunity because of their increased frequency and enhanced reactivity after restimulation. However, it is unclear whether 'memory-like' T cells generated during lymphopeniainduced homeostatic proliferation can also offer protection against pathogens. Here we show that homeostatic proliferationinduced memory (HP-memory) CD8 + T cells controlled bacterial infection as effectively as 'true' memory CD8 + T cells, but their protective capacity required the presence of CD4 + T cells during homeostatic proliferation. The necessity for CD4 help was overcome, however, if the HP-memory CD8 + T cells lacked expression of TRAIL (tumor necrosis factor-related apoptosisinducing ligand; also called Apo-2L). Thus, like conventional CD8 + memory T cells, the protective function of HP-memory CD8 + T cells shows dependence on CD4 + T cell help.