Generation of Pancreatic β Cells from Peripheral Blood Mononucleocytes-Derived-Induced Pluripotent Stem Cells (original) (raw)
Related papers
Folia Histochemica et Cytobiologica
Diabetes mellitus is a chronic disease that affects hundreds of millions of people worldwide. Type 1 diabetes (T1D) is characterized by the lack of pancreatic β-cells that had been destroyed as a result of an autoimmune response. Therefore, in patients with T1D, the replacement therapy with functional β-cells derived from extrinsic sources could be a preferable option as compared to insulin treatment. Unfortunately, successful transplantation of whole pancreata or pancreatic islets into patients with diabetes is available only to a fraction of them due to the scarcity of donors. The rapid development of cell reprogramming methods made it possible to generate large numbers of human β-like cells derived from human embryonic stem cells (hESCs) or human induced pluripotent stem cells (hiPSCs). This review describes the basis of in vitro differentiaton protocols of β-like cells that mimic changes of the main signaling pathways during the key stages of human and murine pancreas development, which are described first. During the last 15 years it was found that there are no important differences between hESCs and hiPSCs in their differentiation capacities into β-like cells and the expression profiles of the key transcription factors. The in vitro produced β-like cells are immature as demonstrated by functional tests in rodents and single-cell transcriptomic and proteomic analyses. After the transplantation of the β cell progenitors into immunocompromised diabetic mice, a few weeks have to pass before the increased insulin levels in response to glucose load appear. There is a continuous progress in the development of open-type encapsulation devices which allow the vascularization of the transplanted cells and protect them against host's immune cells. The results of the first clinical trial of human partially differentiated endocrine progenitors of β cells transplanted into patients with T1D will be published in the year 2019. It is hoped that further improvements in the techniques of large-scale generation of the β-like cells derived from human pluripotent stem cells will bring us closer to their clinical application as a form of cause-directed therapy for people with diabetes.
Efficient generation of functional pancreatic β-cells from human induced pluripotent stem cells
Journal of Diabetes, 2016
Background: Insulin-secreting cells have been generated from human embryonic or induced pluripotent stem cells (iPSCs) by mimicking developmental processes. However, these cells do not always secrete glucose-responsive insulin, one of the most important characteristics of pancreatic β-cells. We focused on the importance of endodermal differentiation from human iPSCs in order to obtain functional pancreatic β-cells. Methods: A six-stage protocol was established for the differentiation of human iPSCs to pancreatic β-cells using defined culture media without feeders or serum. The effects of CHIR99021, a selective glycogen synthase kinase-3β inhibitor, were examined in the presence of fibroblast growth factor 2, activin, and bone morphogenetic protein 4 (FAB) during definitive endodermal induction by immunostaining for SRY (sex determining region Y)-box 17 (SOX17) and Forkhead box protein A2 (FOXA2). Insulin secretion was compared between the last stage of monolayer culture and spheroid culture conditions. Cultured cells were transplanted under kidney capsules of streptozotocin-diabetic nonobese diabetic-severe combined immunodeficiency mice, and blood glucose levels were measured once a week. Immunohistochemical analyses were performed 4 and 12 weeks after transplantation. Results: Addition of CHIR99021 (3 μmol/L) in the presence of FAB for 2 days improved endodermal cell viability, maintaining the high SOX17-positive rate. Spheroid formation after the endocrine progenitor stage showed more efficient insulin secretion than did monolayer culture. After cell transplantation, diabetic mice had lower blood glucose levels, and islet-like structures were detected in vivo. Conclusion: Functional pancreatic β-cells were generated from human iPSCs. Induction of definitive endoderm and spheroid formation may be key steps for producing these cells.
Stem Cells and Development, 2012
The nonobese diabetic (NOD) mouse is a classical animal model for autoimmune type 1 diabetes (T1D), closely mimicking features of human T1D. Thus, the NOD mouse presents an opportunity to test the effectiveness of induced pluripotent stem cells (iPSCs) as a therapeutic modality for T1D. Here, we demonstrate a proof of concept for cellular therapy using NOD mouse-derived iPSCs (NOD-iPSCs). We generated iPSCs from NOD mouse embryonic fibroblasts or NOD mouse pancreas-derived epithelial cells (NPEs), and applied directed differentiation protocols to differentiate the NOD-iPSCs toward functional pancreatic beta cells. Finally, we investigated whether the NPE-iPSC-derived insulin-producing cells could normalize hyperglycemia in transplanted diabetic mice. The NOD-iPSCs showed typical embryonic stem cell-like characteristics such as expression of markers for pluripotency, in vitro differentiation, teratoma formation, and generation of chimeric mice. We developed a method for stepwise differentiation of NOD-iPSCs into insulin-producing cells, and found that NPE-iPSCs differentiate more readily into insulin-producing cells. The differentiated NPE-iPSCs expressed diverse pancreatic beta cell markers and released insulin in response to glucose and KCl stimulation. Transplantation of the differentiated NPE-iPSCs into diabetic mice resulted in kidney engraftment. The engrafted cells responded to glucose by secreting insulin, thereby normalizing blood glucose levels. We propose that NOD-iPSCs will provide a useful tool for investigating genetic susceptibility to autoimmune diseases and generating a cellular interaction model of T1D, paving the way for the potential application of patient-derived iPSCs in autologous beta cell transplantation for treating diabetes.
Derivation of insulin-producing beta-cells from human pluripotent stem cells
The review of diabetic studies : RDS, 2014
Human embryonic stem cells have been advanced as a source of insulin-producing cells that could potentially replace cadaveric-derived islets in the treatment of type 1 diabetes. To this end, protocols have been developed that promote the formation of pancreatic progenitors and endocrine cells from human pluripotent stem cells, encompassing both embryonic stem cells and induced pluripotent stem cells. In this review, we examine these methods and place them in the context of the developmental and embryological studies upon which they are based. In particular, we outline the stepwise differentiation of cells towards definitive endoderm, pancreatic endoderm, endocrine lineages and the emergence of functional beta-cells. In doing so, we identify key factors common to many such protocols and discuss the proposed action of these factors in the context of cellular differentiation and ongoing development. We also compare strategies that entail transplantation of progenitor populations with t...
pluripotent stem cells as a potential tool for disease modelling and cell therapy in diabetes
Diabetes mellitus is the most prevailing disease with progressive incidence worldwide. To date, the pathogenesis of diabetes is far to be understood, and there is no permanent treatment available for diabetes. One of the promising approaches to understand and cure diabetes is to use pluripotent stem cells (PSCs), including embryonic stem cells (ESCs) and induced PCSs (iPSCs). ESCs and iPSCs have a great potential to differentiate into all cell types, and they have a high ability to differentiate into insulin-secreting β cells. Obtaining PSCs genetically identical to the patient presenting with diabetes has been a longstanding dream for the in vitro modeling of disease and ultimately cell therapy. For several years, somatic cell nuclear transfer (SCNT) was the method of choice to generate patient-specific ESC lines. However, this technology faces ethical and practical concerns. Interestingly, the recently established iPSC technology overcomes the major problems of other stem cell types including the lack of ethical concern and no risk of immune rejection. Several iPSC lines have been recently generated from patients with different types of diabetes, and most of these cell lines are able to differentiate into insulin-secreting β cells. In this review, we summarize recent advances in the differentiation of pancreatic β cells from PSCs, and describe the challenges for their clinical use in diabetes cell therapy. Furthermore, we discuss the potential use of patient-specific PSCs as an in vitro model, providing new insights into the pathophysiology of diabetes.
Acta Diabetologica, 2015
Aims New sources of insulin-secreting cells are strongly required for the cure of diabetes. Recent successes in differentiating embryonic stem cells, in combination with the discovery that it is possible to derive human induced pluripotent stem cells (iPSCs) from somatic cells, have raised the possibility that patient-specific beta cells might be derived from patients through cell reprogramming and differentiation. In this study, we aimed to obtain insulinproducing cells from human iPSCs and test their ability to secrete insulin in vivo. Methods Human iPSCs, derived from both fetal and adult fibroblasts, were differentiated in vitro into pancreascommitted cells and then transplanted into immunodeficient mice at two different stages of differentiation (posterior foregut and endocrine cells). Results IPSCs were shown to differentiate in insulin-producing cells in vitro, following the stages of pancreatic organogenesis. At the end of the differentiation, the production of INSULIN mRNA was highly increased and 5 ± 2.9 % of the cell population became insulin-positive. Terminally differentiated cells also produced C-peptide in vitro in both basal and stimulated conditions. In vivo, mice transplanted with pancreatic cells secreted human C-peptide in response to glucose stimulus, but transplanted cells were observed to lose insulin secretion capacity during the time. At histological evaluation, the grafts resulted to be composed of a mixed population of cells containing mature pancreatic cells, but also pluripotent and some neuronal cells. Conclusion These data overall suggest that human iPSCs have the potential to generate insulin-producing cells and that these differentiated cells can engraft and secrete insulin in vivo.
Stem Cell Research & Therapy
Type 1 diabetes mellitus (T1D) is a chronic disease characterized by an autoimmune destruction of insulin-producing β-pancreatic cells. Although many advances have been achieved in T1D treatment, current therapy strategies are often unable to maintain perfect control of glycemic levels. Several studies are searching for new and improved methodologies for expansion of β-cell cultures in vitro to increase the supply of these cells for pancreatic islets replacement therapy. A promising approach consists of differentiation of stem cells into insulin-producing cells (IPCs) in sufficient number and functional status to be transplanted. Differentiation protocols have been designed using consecutive cytokines or signaling modulator treatments, at specific dosages, to activate or inhibit the main signaling pathways that control the differentiation of induced pluripotent stem cells (iPSCs) into pancreatic β-cells. Here, we provide an overview of the current approaches and achievements in obta...
Journal of Biological Engineering, 2017
Recent advances in the expansion and directed pancreatogenic differentiation of human pluripotent stem cells (hPSCs) have intensified efforts to generate functional pancreatic islet cells, especially insulin-secreting β-cells, for cell therapies against diabetes. However, the consistent generation of glucose-responsive insulin-releasing cells remains challenging. In this article, we first present basic concepts of pancreatic organogenesis, which frequently serves as a basis for engineering differentiation regimens. Next, past and current efforts are critically discussed for the conversion of hPSCs along pancreatic cell lineages, including endocrine β-cells and α-cells, as well as exocrine cells with emphasis placed on the later stages of commitment. Finally, major challenges and future directions are examined, such as the identification of factors for in vivo maturation, large-scale culture and post processing systems, cell loss during differentiation, culture economics, efficiency, and efficacy and exosomes and miRNAs in pancreatic differentiation.