MLST and a genetic study of antibiotic resistance and virulence factors in vanA -containing Enterococcu s from buzzards ( Buteo buteo (original) (raw)
Related papers
Revista do Instituto de Medicina Tropical de São Paulo, 2008
Little is known about vancomycin-resistant enterococci in China. Thirteen pulsed-field gel electrophoresisconfirmed heterogeneous VanA-type vancomycin-resistant Enterococcus faecium (VRE) isolates were obtained from five Chinese hospitals from 2001 to 2005. The isolates were typed by multilocus sequence typing into nine different sequence types (STs), including five new STs (ST18, ST25, ST78, ST203, ST320, ST321, ST322, ST323, and ST335). Vancomycin resistance in each isolate was encoded on conjugative plasmids; two of the plasmids, pZB18 (67 kbp) and pZB22 (200 kbp), were highly conjugative and were able to transfer at high frequencies of around 10 ؊4 and 10 ؊7 per donor cell in broth mating, respectively. None of the plasmids identified in these isolates carried traA, which is usually conserved in the pMG1-like highly conjugative plasmid for E. faecium, implying that pZB18 and pZB22 were novel types of a highly conjugative plasmid in enterococci. Thirteen Tn1546-like elements encoding VanA-type VRE on the conjugative plasmids were classified into six types (types I to VI), and most of them contained both IS1216V and IS1542 insertions. The isolates carrying the type II element were predominant. The six type elements were different from that of a VanA-type Enterococcus faecalis strain isolated from Chinese chicken meat. The results suggested that the disseminations of VRE in these areas were by Tn1546-like elements being acquired by the conjugative plasmids and transferred among E. faecium strains.
2021
With Enterococcus species in the leading cause of nosocomial infections and resistance to an array of antibiotics, this study focused to determine the frequency and distribution of vancomycin-resistant Enterococci, the presence of virulence genes and to determine the relative nucleotide sequence relatedness among isolates using 16S rRNA sequence. A random sampling of 120 fecal samples of cattle, poultry, and piggery, and human clinical isolates was analyzed. Standard bacteriological methods were employed in the isolation and characterization of isolates and the disk diffusion method was used in determining their antibiotic resistance profiles. Results showed Enterococcus species in cattle at 100%, followed by clinical isolates at 80%. Vancomycin resistance was observed at high rates in Enterococcus species from human clinical isolates and cattle isolates at 90% and 80% respectively. Multiple antibiotic-resistant isolates yielded twelve resistance profiles and 16S rDNA sequences identified E. faecalis, E. durans, E. mundtii, and Enterococcus sp. Isolates from cattle samples were the most probable source of clinical isolates at 78% homology of conserved regions with the clinical isolates. Virulence determinant genes Asa1 was recorded at66.6%, Cyl at 16.6% and GelE at 8.3% among the isolates. This study established farm animals as possible reservoirs of VRE isolates to man. Hence, healthy and professional practices among animal farmers with antibiotic usage, as well as hygienic and preventive measures among hospital workers are here recommended.
TURKISH JOURNAL OF MEDICAL SCIENCES, 2016
Introduction Enterococci are the natural members of the gastrointestinal tract, mouth, urethra, and vaginal flora and may result in serious nosocomial infections despite their low virulence characteristics. Enterococci are often isolated particularly from patients in intensive care units with suppressed immune systems, hematological malignancies, catheter and prosthesis existence, prolonged hospitalization duration, and usage of broad-spectrum antibiotics (1). The first vancomycin-resistant Enterococcus strain in the world was reported by Uttley et al. (2) in the UK in 1988. In Turkey, the first vancomycin-resistant Enterococcus strain was reported in a pediatric patient by Vural et al. (3) from Akdeniz University in 1998. Resistance to vancomycin develops with the vanA and vanB genes coded by plasmids and vanC, vanD, and vanG coded by chromosomes. The most common multidrug Background/aim: Enterococci play an important role in nosocomial infections. Therefore, this study investigates multidrug resistance (MDR)1 gene areas in the pathogenicity of enterococci and virulence genes in both vancomycin-sensitive enterococci (VSE) and vancomycin-resistant enterococci (VRE) strains. Materials and methods: Virulence genes and MDR genes of enterococci were investigated by polymerase chain reaction (PCR). Results: We evaluated a total of 116 isolates, 93 being VRE and 23 being VSE. In this study, 95.6% of VRE (n = 93) were Enterococcus faecium (n = 89) and 4.3% were E. faecalis (n = 4), while 17.4% of VSE (n = 23) were E. faecium (n = 4) and 82.6% were E. faecalis (n = 19). The vanA MDR1 gene was detected in all VRE isolates. Among virulence genes, esp and hyl were detected in E. faecium, an enterococcus with the highest resistance to vancomycin, and gelE was detected in E. faecalis, an enterococcus with the highest sensitivity to vancomycin. Three or more virulence genes were identified only in VSE strains. We consider that it is a significant result that VSE had more virulence genes than VRE. Only esp was seen in VRE E. faecium strains. Conclusion: This study includes experimental results on the association of virulence characteristics in VRE and VSE strains.
Memórias do Instituto Oswaldo Cruz, 2013
Despite the increasing importance of Enterococcus as opportunistic pathogens, their virulence factors are still poorly understood. This study determines the frequency of virulence factors in clinical and commensal Enterococcus isolates from inpatients in Porto Alegre, Brazil. Fifty Enterococcus isolates were analysed and the presence of the gelE, asa1 and esp genes was determined. Gelatinase activity and biofilm formation were also tested. The clonal relationships among the isolates were evaluated using pulsed-field gel electrophoresis. The asa1, gelE and esp genes were identified in 38%, 60% and 76% of all isolates, respectively. The first two genes were more prevalent in Enterococcus faecalis than in Enterococcus faecium, as was biofilm formation, which was associated with gelE and asa1 genes, but not with the esp gene. The presence of gelE and the activity of gelatinase were not fully concordant. No relationship was observed among any virulence factors and specific subclones of E...
Applied and Environmental Microbiology, 2003
The use of avoparcin as a growth promoter is considered to have selected for vancomycin-resistant enterococci (VRE). In Costa Rica, the use of avoparcin for poultry and swine was intensive until the product was withdrawn from the market in 2000. We evaluated the presence of VRE in poultry, swine, and cattle fecal samples obtained during 1998 and 1999. A total of 185 VRE isolates were recovered from 116 out of 893 samples. Enterococcus faecium was the most frequently isolated species (50.8%), being predominant among poultry (71.6%) and swine (37.7%) isolates, but it was not recovered from the bovine samples. The secondmost-frequently-isolated species from poultry and swine, respectively, were E. durans (23.2%) and E. faecalis (21.7%). E. casseliflavus was the only species obtained from bovine samples, but it was not found among the avian isolates. An evident predominance of the vanA determinant among vancomycin-resistant enterococcal species from poultry and swine, but not from cattle, was observed and was similar to the situation in European countries before avoparcin was forbidden. The diversity of the vanA determinant in the isolates was assessed by detection of the IS1251 insertion in the vanSH intergenic region and of the IS1476 insertion in the vanXY intergenic region. However, in none of the 154 vanA ؉ isolates recovered in this study were those insertions detected.
Ankara Üniversitesi Veteriner Fakültesi Dergisi, 2014
The aims of this research were to study the prevalence of potential virulence factors, vancomycin resistance and also to evaluate a possible correlation that can exist between vancomycin resistance and potential virulence factors between 51 Enterococcus spp. isolated from food and 50 Enterococcus faecium strains from human in southern Turkey. Identification of the isolates was determined by Vitek-II system. Antimicrobial susceptibility tests were performed by Vitek-II system and disc diffusion method. The presence of vanA and vanB as well as enterococcal virulence genes of cytolysin (cylA), the aggregation substance (asa1), gelatinase (gelE), enterococal surface protein (esp), hyaluronidase (hyl) were investigated by Polymerase Chain Reaction (PCR) method. Haemolysin production was also studied phenotypic method. Apart from one isolate, none of the food originated enterococci were resistant to vancomycin, and none carried vanA and vanB resistance genes. All clinical isolates were resistant to vancomycin and 84% of them carried vanA; 2%, vanB; and 14%, neither vanA nor vanB genes. Except for the cylA gene, all other virulence genes and vancomycin resistance were higher in human strains, and a positive correlation was observed between multivirulence genes and hemolytic activity. For all strains, a positive correlation existed between the esp gene positivity and vancomycin resistance, while for only E. faecium, esp, hyl gene positivity and vancomycin resistance a positive correlation could be seen. Furthermore, "silent cylA" genes were found in two food and one intestinal strains. Based on our findings, we can suggest that virulence increases in parallel to vancomycin resistance, and food may be a potential source for dissemination of gelE, asa1 and hyl virulence genes. Finally, esp and hyl genes presence should carefully be monitored in food originated enterococci.
Cukurova Medical Journal, 2019
Purpose: In this study, we investigated the possible relationship between virulence factors and clonal relationship between Vancomycin-resistant colonization and infection isolates. Materials and Methods: A total of 156 Vancomycin-resistant Enterococcus spp. (VRE) were collected and grouped as infection and colonization isolates. A multiplex polymerase chain reaction analysis was performed to screen specific virulence genes (esp, hyl, asa1, cylA and gelE) and vancomycin resistance genes (vanA, vanB). The clonal relationship among isolates was investigated by the Pulsed Field Gel Electrophoresis (PFGE) method. Results: The vanA gene was determined in 86 infection and 64 colonization isolates. esp was the most common virulence gene for both groups (55.8% and 56.25%), followed by hyl (51.1% and 35.9%) that statistically differed between the two groups. The 150 E. faecium isolates carrying the vanA resistance gene were divided into 24 main clusters (A-Y) in PFGE analysis. Conclusion: Wh...
Microorganisms
Food-producing animals may be a reservoir of vancomycin-resistant enterococci (VRE), potentially posing a threat to animal and public health. The aims of this study were to estimate the faecal carriage of VRE among healthy cattle (n = 362), pigs (n = 350), sheep (n = 218), and poultry (n = 102 flocks) in Switzerland, and to characterise phenotypic and genotypic traits of the isolates. VRE were isolated from caecum content of six bovine, and 12 porcine samples respectively, and from pooled faecal matter collected from 16 poultry flock samples. All isolates harboured vanA. Three different types of Tn1546-like elements carrying the vanA operon were identified. Conjugal transfer of vanA to human Enterococcus faecalis strain JH2-2 was observed for porcine isolates only. Resistance to tetracycline and erythromycin was frequent among the isolates. Our data show that VRE harbouring vanA are present in healthy food-producing animals. The vanA gene from porcine isolates was transferable to ot...