Electronic cigarettes and lung toxicity (original) (raw)
Related papers
International Journal of Environmental Research and Public Health, 2015
E-cigarettes are emerging products, often described as "reduced-risk" nicotine products or alternatives to combustible cigarettes. Many smokers switch to e-cigarettes to quit or significantly reduce smoking. However, no regulations for e-cigarettes are currently into force, so that the quality and safety of e-liquids is not necessarily guaranteed. We exposed primary human bronchial epithelial cells of two different donors to vapor of e-cigarette liquid with or without nicotine, vapor of the carrier substances propylene glycol and glycerol as well as to mainstream smoke of K3R4F research cigarettes. The exposure was done in a CULTEX ® RFS compact module, allowing the exposure of the cells at the air-liquid interface. 24 h post-exposure, cell viability and oxidative stress levels in the cells were analyzed. We found toxicological effects of e-cigarette vapor and the pure carrier substances, whereas the nicotine concentration did not have an effect on the cell viability. The viability of mainstream smoke cigarette exposed cells was 4.5-8 times lower and the oxidative stress levels 4.5-5 times higher than those of e-cigarette vapor exposed cells, depending on the donor. OPEN ACCESS Our experimental setup delivered reproducible data and thus provides the opportunity for routine testing of e-cigarette liquids to ensure safety and quality for the user.
PLOS ONE, 2015
Oxidative stress and inflammatory response are the key events in the pathogenesis of chronic airway diseases. The consumption of electronic cigarettes (e-cigs) with a variety of e-liquids/e-juices is alarmingly increasing without the unrealized potential harmful health effects. We hypothesized that electronic nicotine delivery systems (ENDS)/e-cigs pose health concerns due to oxidative toxicity and inflammatory response in lung cells exposed to their aerosols. The aerosols produced by vaporizing ENDS e-liquids exhibit oxidant reactivity suggesting oxidants or reactive oxygen species (OX/ROS) may be inhaled directly into the lung during a "vaping" session. These OX/ROS are generated through activation of the heating element which is affected by heating element status (new versus used), and occurs during the process of e-liquid vaporization. Unvaporized e-liquids were oxidative in a manner dependent on flavor additives, while flavors containing sweet or fruit flavors were stronger oxidizers than tobacco flavors. In light of OX/ROS generated in ENDS e-liquids and aerosols, the effects of ENDS aerosols on tissues and cells of the lung were measured. Exposure of human airway epithelial cells (H292) in an air-liquid interface to ENDS aerosols from a popular device resulted in increased secretion of inflammatory cytokines, such as IL-6 and IL-8. Furthermore, human lung fibroblasts exhibited stress and morphological change in response to treatment with ENDS/e-liquids. These cells also secrete increased IL-8 in response to a cinnamon flavored e-liquid and are susceptible to loss of cell viability by ENDS e-liquids. Finally, exposure of wild type C57BL/6J mice to aerosols produced from a popular e-cig increase pro-inflammatory cytokines and diminished lung glutathione levels which are critical in maintaining cellular redox balance. Thus, exposure to e-cig aerosols/ juices incurs measurable oxidative and inflammatory responses in lung cells and tissues that could lead to unrealized health consequences.
Drug and Chemical Toxicology, 2021
An electronic cigarette is a rechargeable device that produces an inhaled aerosol containing varying levels of nicotine, and inorganic and organic toxicants and carcinogenic compounds. The aerosol is generated by heating a solution of propylene glycol and glycerin with nicotine and flavoring ingredients at a high temperatures. The e-cigarette was developed and marketed as a safer alternative to the regular cigarette which is known to be injurious to human health. However, published studies suggest that the aerosol of e-cigarette can also have adverse health effects. The main objective of this review is to briefly describe some consequences of e-cigarette smoking, and to present data showing that the resulting increased oxidative stress and inflammation are likely to be involved in effecting to lung damage. The aerosol contains varying amounts of organic and inorganic toxicants as well as carcinogens, which might serve as the source of such deleterious events. In addition, the aerosol also contains nicotine, which is known to be addictive. E-cigarette smoking releases these toxicants into the air leading to inhalation by non-smokers in residential or work place areas. Unlike regular tobacco smoke, the long-term consequences of direct and secondhand exposure to e-cigarette aerosol have not been extensively studied but based on available data, e-cigarette aerosol should be considered harmful to human health
American journal of physiology. Lung cellular and molecular physiology, 2018
Electronic cigarettes (e-cig) are advertised as a less harmful nicotine delivery system or as a new smoking cessation tool. We aimed to assess the in vivo effects of e-cigarette vapor in the lung and to compare them to those of cigarette smoke (CS). We exposed C57BL/6 mice for either 3 days or 4 weeks to ambient air, CS or e-cig vapor containing: i) propylene glycol/vegetable glycerol (1:1; PG:VG-Sol), ii) PG:VG with nicotine (G:VG-N), or iii) PG:VG with nicotine and flavor (PG:VG- N+F) and determined oxidative stress, inflammation and pulmonary mechanics. E-cig vapors, especially PG:VG- N+F, increased bronchoalveolar lavage fluid (BALF) cellularity, Muc5ac production, as well as BALF and lung oxidative stress markers at least comparably and in many cases more than CS. BALF protein content at both time points studied was only elevated in the PG:VG- N+F group. After 3 days, PG:VG-Sol altered tissue elasticity, static compliance and airway resistance, while after 4 weeks, CS was the o...
Respiratory Impact of Electronic Cigarettes and Low-Risk Tobacco
Revista de investigaci�n Cl�nica, 2019
Electronic cigarettes, handheld devices that generate an aerosol that may contain nicotine by heating a solution or e-liquid, have been increasingly used especially in the young population. The aerosol's composition is determined by temperature, and by the substances contained in the heated liquid: glycerin, propylene glycol, nicotine in variable concentrations, flavoring agents, and other non-nicotine compounds. >80 compounds (including known toxics, e.g., formaldehyde, acetaldehyde, metallic nanoparticles, and acrolein) have been found in e-liquid and aerosols. Airway irritation, mucus hypersecretion, and inflammatory response, including systemic changes, have been observed after the exposure to e-cigarettes, leading to an increase in respiratory symptoms and changes in respiratory function and the host defense mechanisms. E-cigarette has been linked with an increase of symptoms in individuals with asthma, cystic fibrosis, and chronic obstructive pulmonary disease. One of the major concerns in public health is the rise in e-cigarette experimentation among never-smokers, especially children and adolescents, which leads to nicotine addiction and increases the chances of becoming with time a conventional smoker. There is an urgent need to regulate e-cigarettes and electronic nicotine delivery systems, at least with the same restrictions to those applied to tobacco products, and not to consider them as harmless products.
Toxicology in Vitro, 2020
The use of electronic vaping products (EVPs) continues to increase worldwide among adult smokers in parallel with accumulating information on their potential toxicity and relative safety compared to tobacco smoke. At this time, in vitro assessments of many widely available EVPs are limited. In this study, an in vitro battery of established assays was used to examine the cytotoxic (Neutral red uptake), genotoxic (In vitro micronucleus) and mutagenic (Bacterial reverse mutation) responses of two commercial EVPs (blu GO™ disposable and blu PLUS +™ rechargeable) when compared to smoke from a reference cigarette (3R4F). In total, 12 commercial products were tested as e-liquids and as aerosols. In addition, two experimental base liquids containing 1.2% and 2.4% nicotine were also assessed to determine the effect of flavour and nicotine on all three assays. In the bacterial reverse mutation (Ames) and in vitro micronucleus (IVM) assays, exposures to e-liquids and EVP aerosols, with and without nicotine and in a range of flavourings, showed no mutagenic or genotoxic effects compared to tobacco smoke. The neutral red uptake (NRU) assay showed significantly reduced cytotoxicity (P < .05) for whole undiluted EVP aerosols compared to tobacco smoke, which by contrast was markedly cytotoxic even when diluted. The reduced in vitro toxicological responses of the EVPs add to the increasing body of scientific weight-ofevidence supporting the role of high-quality EVPs as a harm reduction tool for adult smokers.
2021
University of Technology Sydney. Faculty of Science.Electronic cigarettes have rapidly become the consumer preferred alternative to tobacco cigarettes, but very little is known about the harms associated with their use. Electronic cigarettes are often proposed as a cessation device from a harm reduction standpoint, but this overlooks the lack of evidence for reduced harms and the numerous new vapers who have never smoked that are exposed to harms they otherwise would have avoided. Studies within this thesis provide essential evidence in the harm reduction debate. In Chapter 3 we surveyed perceptions of young Australians towards E-cigarettes. We hypothesised that they would believe E-cigarettes to be less harmful than tobacco cigarettes, and that they would be misinformed about E-cigarette regulations in Australia due to a lack of education from regulatory bodies. In Chapters 4, 5 and 6 of this thesis we used in vitro models of exposure to determine potential health risks associated ...
PLOS ONE, 2015
Electronic cigarettes (E-cigs) have experienced sharp increases in popularity over the past five years due to many factors, including aggressive marketing, increased restrictions on conventional cigarettes, and a perception that E-cigs are healthy alternatives to cigarettes. Despite this perception, studies on health effects in humans are extremely limited and in vivo animal models have not been generated. Presently, we determined that E-cig vapor PLOS ONE |
Scientific Reports, 2020
Limited toxicity data on electronic cigarette (ECIG) impede evidence-based policy recommendations. We compared two popular mixed fruit flavored ECIG-liquids with and without nicotine aerosolized at 40 W (E-smoke) with respect to particle number concentrations, chemical composition, and response on physiologically relevant human bronchial and alveolar lung mucosa models cultured at air–liquid interface. E-smoke was characterized by significantly increased particle number concentrations with increased wattage (25, 40, and 55 W) and nicotine presence. The chemical composition of E-smoke differed across the two tested flavors in terms of cytotoxic compounds including p-benzoquinone, nicotyrine, and flavoring agents (for example vanillin, ethyl vanillin). Significant differences in the expression of markers for pro-inflammation, oxidative stress, tissue injury/repair, alarm anti-protease, anti-microbial defense, epithelial barrier function, and epigenetic modification were observed betwe...