Controlling Canard Cycles (original) (raw)

Relaxation Oscillation and Canard Explosion

Peter Szmolyan

Journal of Differential Equations, 2001

View PDFchevron_right

Stabilization of a planar slow-fast system at a non-hyperbolic point

Hildeberto Jardón-Kojakhmetov, Jacquelien Scherpen

2016

View PDFchevron_right

Canards, folded nodes and mixed-mode oscillations in piecewise-linear slow-fast systems

Enrique Ponce

arXiv (Cornell University), 2016

View PDFchevron_right

Canard-like phenomena in piecewise-smooth Van der Pol systems

Paul Glendinning

Chaos (Woodbury, N.Y.), 2014

View PDFchevron_right

Canard-induced loss of stability across a homoclinic bifurcation [Perte de stabilité induite par des solutions canards au travers d'une bifurcation homocline]

Jean-Pierre Francoise

ARIMA J., 2015

View PDFchevron_right

Canard cycles in aircraft ground dynamics

Mark Lowenberg

Nonlinear Dynamics, 2011

View PDFchevron_right

Canards Flying on Bifurcation

Shuya Kanagawa

Advances in Pure Mathematics, 2023

View PDFchevron_right

Canard Cycles in Global Dynamics

Alexandre Vidal, Jean-Pierre Francoise

International Journal of Bifurcation and Chaos, 2012

View PDFchevron_right

False bifurcations in chemical systems: canards

Vilmos Gáspár

Philosophical transactions, 1991

View PDFchevron_right

Many-circuit canard trajectories and their applications

Sergey Glyzin

Izvestiya: Mathematics, 2017

View PDFchevron_right

Canard cycles with two breaking parameters

Robert Roussarie

Discrete and Continuous Dynamical Systems, 2007

View PDFchevron_right

Discretized Fast–Slow Systems with Canards in Two Dimensions

Maximilian Engel

Journal of Nonlinear Science, 2022

View PDFchevron_right

Canard cycle transition at a slow–fast passage through a jump point

Robert Roussarie

Comptes Rendus Mathematique, 2014

View PDFchevron_right

Stabilization of slow-fast systems at fold points

Jacquelien Scherpen

ArXiv, 2017

View PDFchevron_right

Modal control of an unstable periodic orbit

William Wiesel

1982

View PDFchevron_right

The forced van der Pol equation II: Canards in the reduced system

Judith Hubbard

2003

View PDFchevron_right

The entry-exit theorem and relaxation oscillations in slow-fast planar systems

Susmita Sadhu

Journal of Differential Equations

View PDFchevron_right

Quasi-periodic bifurcations of invariant circles in low-dimensional dissipative dynamical systems

Renato Vitolo, Henk Broer

Regular and Chaotic Dynamics, 2011

View PDFchevron_right

Bifurcation diagrams for singularly perturbed system: the multi-dimensional case

Matteo Franca

Electronic Journal of Qualitative Theory of Differential Equations, 2013

View PDFchevron_right

On the control of Hopf bifurcations

Boumediene Hamzi

2000

View PDFchevron_right

Limit cycles in slow-fast codimension 3 saddle and elliptic bifurcations

F. Dumortier

Journal of Differential Equations, 2013

View PDFchevron_right

Extended and Symmetric Loss of Stability for Canards in Planar Fast-Slow Maps

Hildeberto Jardón-Kojakhmetov

2020

View PDFchevron_right

Bifurcation control of aeroelastic limit cycle oscillations

Max Demenkov, Mikhail Goman

View PDFchevron_right

Discretized Fast-Slow Systems with Canard Connections in Two Dimensions

Maximilian Engel

2020

View PDFchevron_right

Chaotically spiking canards in an excitable system with 2D inertial fast manifolds

Oreste Piro, Salvador Balle

Physical review letters, 2007

View PDFchevron_right

Pulsating Feedback Control for Stabilizing Unstable Periodic Orbits in a Nonlinear Oscillator with a Nonsymmetric Potential

Grzegorz Litak

International Journal of Bifurcation and Chaos, 2007

View PDFchevron_right

Transversal heteroclinic and homoclinic orbits in singular perturbation problems

Peter Szmolyan

Journal of Differential Equations, 1991

View PDFchevron_right

Extending Geometric Singular Perturbation Theory to Nonhyperbolic Points---Fold and Canard Points in Two Dimensions

Peter Szmolyan

SIAM Journal on Mathematical Analysis, 2001

View PDFchevron_right

A Singular Perturbation Approach in Nonlinear Aeroelasticity for Limit-Cycle Oscillations

F. Mastroddi

View PDFchevron_right

The Forced van der Pol Equation II

Ricardo Oliva

Siam Journal on Applied Dynamical Systems, 2003

View PDFchevron_right

Discretized Fast-Slow Systems with Canard Points in Two Dimensions

Maximilian Engel

arXiv: Dynamical Systems, 2019

View PDFchevron_right

Singularly perturbed Hamiltonian systems: the dynamics near slow manifold

Lev Lerman

View PDFchevron_right

Topological degree in analysis of canard-type trajectories in 3-D systems

Vladimir Sobolev

Applicable Analysis, 2011

View PDFchevron_right