Fabrication Process of Single CuO Nanowire Devices (original) (raw)
Related papers
Synthesis and Characterization of CuO Nanowires
2006
Synthesis of copper oxide nanowires was done heating up copper wires in wet ambient air at 400 and 500degC. The existence of nanowires was confirmed by SEM images and EDX spectroscopy. Nanowires were not formed in nitrogen ambient. The diameters of synthesized nanowires are between 30 to 160 nm and lengths up to 39 mum. SEM image shows that CuO nanowires were formed on top of the oxide grains. Vapor-solid growth mechanism is also suggested for the growth of this nanowire.
Formation of CuO nanowires on Cu foil
Chemical physics letters, 2004
Cupric oxide, CuO, has many interesting properties. It has a monoclinic crystal structure, and is a p-type semiconductor with a narrow band gap (1.2 eV) [1]. It is also a Mott insulator (3d transition metal monoxide), the electronic structures of which cannot be simply described within the ...
Nanomaterials, 2020
Size distribution, Young’s moduli and electrical resistivity are investigated for CuO nanowires synthesized by different thermal oxidation methods. Oxidation in dry and wet air were applied for synthesis both with and without an external electrical field. An increased yield of high aspect ratio nanowires with diameters below 100 nm is achieved by combining applied electric field and growth conditions with additional water vapour at the first stage of synthesis. Young’s moduli determined from resonance and bending experiments show similar diameter dependencies and increase above 200 GPa for nanowires with diameters narrower than 50 nm. The nanowires synthesized by simple thermal oxidation possess electrical resistivities about one order of magnitude lower than the nanowires synthesized by electric field assisted approach in wet air. The high aspect ratio, mechanical strength and robust electrical properties suggest CuO nanowires as promising candidates for NEMS actuators.
Synthesis and characterization of CuO nanowires by a simple wet chemical method
Nanoscale Research Letters, 2012
We report a successful synthesis of copper oxide nanowires with an average diameter of 90 nm and lengths of several micrometers by using a simple and inexpensive wet chemical method. The CuO nanowires prepared via this method are advantageous for industrial applications which require mass production and low thermal budget technique. It is found that the concentration and the quantity of precursors are the critical factors for obtaining the desired one-dimensional morphology. Field emission scanning electron microscopy images indicate the influence of thioglycerol on the dispersity of the prepared CuO nanowires possibly due to the stabilization effect of the surface caused by the organic molecule thioglycerol. The Fourier transform infrared spectrum analysis, energy dispersive X-ray analysis, X-ray diffraction analysis, and X-ray photoemission spectrum analysis confirm clearly the formation of a pure phase high-quality CuO with monoclinic crystal structure.
Investigation of Quantum-Confinement Effect in a Single CuO Nanowire
Japanese Journal of Applied Physics, 2008
Spatially well separated cupric oxide (CuO) nanowires grown using thermal oxidation method were examined to directly observe the scale structure evolution of lattice vibration modes. Scanning electron microscopy and high-resolution transmission electron microscopy studies revealed the single crystalline nature and microstructure of a single CuO nanowire. Phonon spectral evolution along the wire axis was investigated using confocal Raman spectroscopy by scanning a single nanowire. The A g , B ð1Þ g , and B ð2Þ g phonon modes of CuO that are quantum-confined in radial directions of the thin nanowire evidenced from the observed systematic red-shift, broadening of the peak profile. These results can be well explained based on the phonon confinement model.
Journal of the Chilean Chemical Society, 2010
CuO nanowires were successfully made through a simple wet chemical method at room temperature by immersing on copper sheets in a 4 M ammonia solution for 4 days and then subjecting it to heat treatment. Immersion time and heat treatment have an important effect on the length, diameter, and density of the CuO nanostructures. X-ray powder diffraction (XRD) patterns indicated that the samples are composed of a single phase, CuO. Scanning electron microscopy (SEM), transmission electron microscopy (TEM), and Raman spectroscopy studies showed that the wet-treated samples consisted of nanofiber-like structures of monoclinic CuO, while the heat-treated samples consisted of well-defined nanowires which also exhibited the monoclinic phase.
Growth and sensing properties of networked p-CuO nanowires
Sensors and Actuators B: Chemical, 2015
Networked p-CuO nanowires were grown on patterned-electrode pads by the thermal oxidation of Cu layers. Vertically aligned CuO nanowires grown on adjacent round-shape electrode pads were entangled, eventually forming nanowire-nanowire junctions. The sensing properties of the networked CuO nanowires were examined for a range of oxidizing gases, such as NO 2 , SO 2 and O 2 , and reducing gases, such as CO, C 6 H 6 , C 7 H 8 , and H 2 , and compared with those of networked n-SnO 2 nanowires. The gas responses of the networked CuO nanowires to the tested oxidizing gases were inferior to those of networked n-SnO 2 nanowires. In contrast, for reducing gases, the networked CuO nanowires showed comparable gas responses to the networked n-SnO 2 nanowires. The results suggest that the networked CuO nanowires are more promising for the detection of reducing gases rather than oxidizing gases.
Large-scale synthesis and field emission properties of vertically oriented CuO nanowire films
Nanotechnology, 2005
Using a simple method of direct heating of bulk copper plates in air, oriented CuO nanowire films were synthesized on a large scale. The length and density of nanowires could be controlled by growth temperature and growth time. Field emission (FE) measurements of CuO nanowire films show that they have a low turn-on field of 3.5-4.5 V µm −1 and a large current density of 0.45 mA cm −2 under an applied field of about 7 V µm −1. By comparing the FE properties of two types of samples with different average lengths and densities (30 µm, 10 8 cm −2 and 4 µm, 4 × 10 7 cm −2 , respectively), we found that the large length-radius ratio of CuO nanowires effectively improved the local field, which was beneficial to field emission. Verified with finite element calculation, the work function of oriented CuO nanowire films was estimated to be 2.5-2.8 eV.
Direct growth of CuO/ITO nanowires by the vapor solid oxidation method
Springer, 2016
In this paper, we report the synthesis results of cupric oxide nanowires (NWs) on the indium tin oxide (ITO) substrate by vapor solid oxidation method. In our study, a Cu layer of thickness 1.4 µm was deposited on ITO thin film substrates through the direct current DC magnetron sputtering method. Cupric oxide NWs grew on ITO after annealing Cu/ITO substrates at the temperatures with range from 350 to 500 °C in air for 3–5 h. The received peak shift of Cu2O to CuO NW phase depending on annealing temperatures was conducted by X-ray diffraction. Chemical atomic elements were obtained from energy dispersive X-ray spectroscopy. The morphology of nanowires were investigated using scanning electron microsope (SEM). The SEM images indicated that the NWs with length about 3–3.5 µm and diameter about 100 nm grew vertically over large area
Synthesis of CuO Nanowires on Waste Copper Wires
2006
∗ Corresponding author: Tel.: +603-8921-6928; Fax: +603-8925-9080. Email: cfdee@vlsi.eng.ukm.my (Dee Chang Fu) ... Synthesis of CuO Nanowires on Waste Copper Wires ... CF Dee*, Muhammad Yahaya, Muhamad Mat Salleh and Burhanuddin Yeop Majlis