1H NMR Metabolomics of Chinese Human Milk at Different Stages of Lactation among Secretors and Non-Secretors (original) (raw)

Exploring human breast milk composition by NMR-based metabolomics

Natural Product Research, 2014

The accuracy of the Content should not be relied upon and should be independently verified with primary sources of information. Taylor and Francis shall not be liable for any losses, actions, claims, proceedings, demands, costs, expenses, damages, and other liabilities whatsoever or howsoever caused arising directly or indirectly in connection with, in relation to or arising out of the use of the Content. This article may be used for research, teaching, and private study purposes. Any substantial or systematic reproduction, redistribution, reselling, loan, sub-licensing, systematic supply, or distribution in any form to anyone is expressly forbidden. Terms &

NMR-Based Milk Metabolomics

Metabolites, 2013

Milk is a key component in infant nutrition worldwide and, in the Western parts of the world, also in adult nutrition. Milk of bovine origin is both consumed fresh and processed into a variety of dairy products including cheese, fermented milk products, and infant formula. The nutritional quality and processing capabilities of bovine milk is closely associated to milk composition. Metabolomics is ideal in the study of the low-molecular-weight compounds in milk, and this review focuses on the recent nuclear magnetic resonance (NMR)-based metabolomics trends in milk research, including applications linking the milk metabolite profiling with nutritional aspects, and applications which aim to link the milk metabolite profile to various technological qualities of milk. The metabolite profiling studies encompass the identification of novel metabolites, which potentially can be used as biomarkers or as bioactive compounds. Furthermore, metabolomics applications elucidating how the differential regulated genes affects milk composition are also reported. This review will highlight the recent advances in NMR-based metabolomics on milk, as well as give a brief summary of when NMR spectroscopy can be useful for gaining a better understanding of how milk composition is linked to nutritional or quality traits.

A metabolomic study of preterm human and formula milk by high resolution NMR and GC/MS analysis: preliminary results

Journal of Maternal-Fetal and Neonatal Medicine, 2012

The aim of the present study was to investigate the metabolic profile of preterm human breast milk (HBM) by using a metabolomic approach. Methods: NMR spectroscopy and GC/ MS were used to analyze the water-soluble and lipid fractions extracted from milk samples obtained from mothers giving birth at 26-36 weeks of gestation. For the sake of comparison, preterm formula milk was also studied. Results: The multivariate statistical analysis of the data evidenced biochemical variability both between preterm HBM and commercial milk and within the group of HBM samples. Conclusions: The preliminary results of this study suggest that metabolomics may provide a promising tool to study aspects related to the nutrition and health of preterm infant.

NMR-based metabolomics analysis of organic and conventionally produced formula milk: preliminary results

2019

Proceedings of the 15 th International Workshop on Neonatology and the 40 th Congress UMEMPS (Union of Middle-Eastern and Mediterranean Pediatric Societies) • Cagliari (Italy) • October 24 th -26 th , 2019 • Children of the Middle-Eastern and Mediter­ranean area: we can do better! Guest Editors: Vassilios Fanos (Cagliari, Italy), Enver Hasanoglu (Ankara, Turkey), Michele Mussap (Cagliari, Italy), Robert Sacy (Beirut, Lebanon), Elie Saliba (Tours, France), Salvatore Vendemmia (Aversa, Italy) Nutrition in early life has important biological effects on immediate and lifetime health. In the light of these considerations, products such as specialized and standard infant formulas substitute for human milk have the potential to influence health outcomes differently depending on their composition. The recent knowledge of the long-term health benefits of breast-feeding has addressed research toward the creation of formulas ever closer to the needs of the infant both in term of nutritional and...

Metabolomics of Breast Milk: The Importance of Phenotypes

Metabolites

Breast milk is the gold standard of nutrition for newborns. Its composition is tailored to the nutritional needs of the infant and varies between mothers. In recent years, several bioactive molecules have been discovered in addition to the main nutrients, such as multipotent stem cells, hormones, immunoglobulins, and bacteria. Furthermore, the human milk oligosaccharides (HMOs) seem to exert several important protective biological functions. According to the HMOs’ composition, breast milk can be classified as a secretory or non-secretory phenotype. In our study, we investigated the metabolome of milk collected from 58 mothers that delivered neonates at term, that were appropriate, small or large for gestational age, by performing nuclear magnetic resonance spectroscopy (1H-NMR). From the data analysis, two groups were distinguished based on their different types of oligosaccharides, and classified according the mother phenotype: secretory and non-secretory. This information is of ma...

Nuclear magnetic resonance and mass spectrometry-based milk metabolomics in dairy cows during early and late lactation

Journal of Dairy Science, 2010

Milk production in dairy cows has dramatically increased over the past few decades. The selection for higher milk yield affects the partitioning of available nutrients, with more energy being allocated to milk synthesis and less to physiological processes essential to fertility and fitness. In this study, the abundance of numerous milk metabolites in early and late lactation was systematically investigated, with an emphasis on metabolites related to energy metabolism. The aim of the study was the identification and correlation of milk constituents to the metabolic status of the cows. To investigate the influence of lactation stage on physiological and metabolic variables, 2 breeds of different productivity were selected for investigation by high-resolution nuclear magnetic resonance spectroscopy and gas chromatography-mass spectrometry. We could reliably quantify 44 different milk metabolites. The results show that biomarkers such as acetone and β-hydroxybutyrate are clearly correlated to the metabolic status of the individual cows during early lactation. Based on these data, the selection of cows that cope well with the metabolic stress of early lactation should become an option. . Correlation between lactation day and phosphocholine concentration (mmol/L) for milk specimens from farm 1 (top) and farm 2 (bottom) as measured by 2-dimensional nuclear magnetic resonance. To clarify the general trend of the data, a potential regression line was added.

Infant Maturity at Birth Reveals Minor Differences in the Maternal Milk Metabolome in the First Month of Lactation

The Journal of nutrition, 2015

Human milk is the gold standard of nutrition for infants, providing both protective and essential nutrients. Although much is known about milk from mothers giving birth to term infants, less is known about milk from mothers giving birth to premature infants. In addition, little is known about the composition and diversity of small molecules in these milks and how they change over the first month of lactation. The objective was to understand how milk metabolites vary over the first month of lactation in mothers giving birth to term and preterm infants. (1)H nuclear magnetic resonance (NMR) metabolomics was used to characterize metabolites that were present in micromolar to molar concentrations in colostrum (day 0-5 postpartum), transition milk (day 14), and mature milk (day 28) from mothers who delivered term (n = 15) and preterm (n = 13) infants. Principal components analysis, linear mixed-effects models (LMMs), and linear models (LMs) were used to explore the relation between infan...

NMR-based metabolomics of water-buffalo milk after conventional or biological feeding

Chemical and Biological Technologies in Agriculture, 2018

Background: Biological farming in dairy production is often advocated as one of the most virtuous solutions to the environmental problems of conventional farming while improving the sustainability of production and cattle welfare. However, it is still under debate whether the conversion from conventional to biological farming has an influence on milk composition. In addition, the possible frauds related to biological dairy products call for analytical tools enabling the authentication of products quality and consumers protection. The aim of this work was to determine the composition of milk produced by water-buffaloes and to identify the specific metabolic profiles discriminating a biological from a conventional feeding diet. Methods: Liquid-state 1 H, 13 C, and 31 P nuclear magnetic resonance (NMR) spectroscopies were used to study milk samples which were supplied during a 2-year-long experimentation by a single dairy farm and sampled from conventionally and biologically fed buffaloes (CFM and BFM, respectively). For each milk sample, we obtained NMR spectra of both raw milk and milk cream fractions comprising neutral lipids and phospholipids. Results: The elaboration of multinuclear spectroscopic NMR results by the principal component analysis (PCA) enabled the identification of diagnostic differences in the milk composition between CFM and BFM samples. In particular, BFM were characterized by larger content of unsaturated lipids and phosphatidylcholine. Our findings confirmed that the conversion from a conventional to biological feeding regime influenced the buffalo milk composition, with possible implications for sensorial and nutritional properties of dairy products. Finally, the analytical methodology of NMR spectroscopy shown here may be considered as a useful tool to assess the quality and the authenticity of biological milk.

A metabolomic study of preterm and term human and formula milk by proton MRS analysis: preliminary results

Journal of Maternal-Fetal and Neonatal Medicine, 2014

Objective: To investigate changes in global metabolic profile between: 1 -breast milk and formula milk, 2 -breast milk from mothers delivering at different gestational age (GA) collected within one week from delivery, and then week by week until term equivalent age. Methods: Proton magnetic resonance spectroscopy (MRS) was used to analyze the watersoluble and lipid fractions extracted from 50 milk samples, 46 human milk at different GA, from 23 weeks of gestation until term equivalent age and four different formula milks. Results: The formula milk for premature infants was the most similar to breast milk of preterm babies. Breast milk showed higher lactose concentrations than formula milk, that conversely presented higher galactose 1-phosphate and maltose concentrations. Mother's milk of very preterm babies (23-25 wks of GA) showed a different metabolic profile from preterm infants !29 wks of GA with a subsequent trend to similarity around the 30th week of post-natal age. Breast milk from preterm infants of 29-34 wks, collected up to 40 wks of post-natal age showed a temporal change over the first three weeks of lactation, approaching to zero with the achievement of term age. Conclusions: Metabolome is a promising tool to study human and artificial milk global metabolic profile.

Untargeted Metabolomic Analysis of Lactation-Stage-Matched Human and Bovine Milk Samples at 2 Weeks Postnatal

Nutrients

Epidemiological data demonstrate that bovine whole milk is often substituted for human milk during the first 12 months of life and may be associated with adverse infant outcomes. The objective of this study is to interrogate the human and bovine milk metabolome at 2 weeks of life to identify unique metabolites that may impact infant health outcomes. Human milk (n = 10) was collected at 2 weeks postpartum from normal-weight mothers (pre-pregnant BMI < 25 kg/m2) that vaginally delivered term infants and were exclusively breastfeeding their infant for at least 2 months. Similarly, bovine milk (n = 10) was collected 2 weeks postpartum from normal-weight primiparous Holstein dairy cows. Untargeted data were acquired on all milk samples using high-resolution liquid chromatography–high-resolution tandem mass spectrometry (HR LC-MS/MS). MS data pre-processing from feature calling to metabolite annotation was performed using MS-DIAL and MS-FLO. Our results revealed that more than 80% of t...