7-Diethylamino-3(2′-benzoxazolyl)-coumarin is a novel microtubule inhibitor with antimitotic activity in multidrug resistant cancer cells (original) (raw)

Microtubins: a novel class of small synthetic microtubule targeting drugs that inhibit cancer cell proliferation

Oncotarget, 2017

Microtubule targeting drugs like taxanes, vinca alkaloids, and epothilones are widely-used and effective chemotherapeutic agents that target the dynamic instability of microtubules and inhibit spindle functioning. However, these drugs have limitations associated with their production, solubility, efficacy and unwanted toxicities, thus driving the need to identify novel antimitotic drugs that can be used as anticancer agents. We have discovered and characterized the Microtubins (Microtubule inhibitors), a novel class of small synthetic compounds, which target tubulin to inhibit microtubule polymerization, arrest cancer cells predominantly in mitosis, activate the spindle assembly checkpoint and trigger an apoptotic cell death. Importantly, the Microtubins do not compete for the known vinca or colchicine binding sites. Additionally, through chemical synthesis and structure-activity relationship studies, we have determined that specific modifications to the Microtubin phenyl ring can a...

Microtubules as a target for anticancer drugs

Nature Reviews Cancer, 2004

Highly dynamic mitotic-spindle microtubules are among the most successful targets for anticancer therapy. Microtubule-targeted drugs, including paclitaxel and Vinca alkaloids, were previously considered to work primarily by increasing or decreasing the cellular microtubule mass. ...

Potential Mechanisms of Resistance to Microtubule Inhibitors

Seminars in Oncology, 2008

Antimitotic drugs targeting the microtubules, such as the taxanes and vinca alkaloids, are widely used in the treatment of neoplastic diseases. Development of drug resistance over time, however, limits the efficacy of these agents and poses a clinical challenge to long-term improvement of patient outcomes. Understanding the mechanism(s) of drug resistance becomes paramount to allowing for alternative, if not improved, therapeutic options that might circumvent this challenge. Vinflunine, a novel microtubule inhibitor, has shown superior preclinical antitumor activity, and displays a different pattern of resistance, compared with other agents in the vinca alkaloid class.

Mechanism of Action of Antitumor Drugs that Interact with Microtubules and Tubulin

Current Medicinal Chemistry-Anti-Cancer Agents, 2012

Microtubules, major structural components in cells, are the target of a large and diverse group of natural product anticancer drugs. Given the success of this class of drugs in cancer treatment, it can be argued that microtubules represent the single best cancer target identified to date. Microtubules are highly dynamic assemblies of the protein tubulin. They readily polymerize and depolymerize in cells, and they undergo two interesting kinds of dynamics called dynamic instability and treadmilling. These dynamic behaviors are crucial to mitosis, the process of chromosomal division to form new cells. Microtubule dynamics are highly regulated during the cell cycle by endogenous cellular regulators. In addition, many antitumor drugs and natural compounds alter the polymerization dynamics of microtubules, blocking mitosis, and consequently, inducing cell death by apoptosis. These drugs include several that inhibit microtubule polymerization at high drug concentrations, namely, the Vinca alkaloids, cryptophycins, halichondrins, estramustine, and colchicine. Another group of these compounds stimulates microtubule polymerization and stabilizes microtubules at high concentrations. These include Taxol™, Taxotere™, eleutherobins, epothilones, laulimalide, sarcodictyins, and discodermolide. Importantly, considerable evidence indicates that, at lower concentrations, these drugs have a common mechanism of action; they suppress the dynamics of microtubules without appreciably changing the mass of microtubules in the cell. The drugs bind to diverse sites on tubulin and at different positions within the microtubule, and they have diverse effects on microtubule dynamics. However, by their common mechanism of suppression microtubule dynamics, they all block mitosis at the metaphase/anaphase transition, and induce cell death. I. MICROTUBULES AS TARGETS FOR ANTI-CANCER DRUGS Microtubules are major dynamic structural components in cells. They are important in the development and maintenance of cell shape, in cell reproduction and division, in cell signaling, and in cellular movement [1]. Microtubules are the target of a diverse group of anticancer drugs, most of which are derived from natural products. Given the success of this class of drugs, the mitotic inhibitors, it can be argued that microtubules represent the single best cancer target identified to date [2] [3]. Microtubules are highly dynamic polymers of heterodimers of α and β tubulin, arranged parallel to a cylindrical axis to form tubes of 25 nm diameter that may be many µm long. Polymerization of microtubules occurs by a nucleation-elongation mechanism in which the formation of a short microtubule 'nucleus' is followed by elongation of the microtubule at its ends by the reversible, noncovalent addition of tubulin dimers. Microtubules are not simple equilibrium polymers. They exhibit complex polymerization dynamics that use energy provided by the hydrolysis of GTP, and these dynamics are crucial to their cellular functions. A large number of chemically diverse substances bind to

Sensitivity of docetaxel-resistant MCF-7 breast cancer cells to microtubule-destabilizing agents including vinca alkaloids and colchicine-site binding agents

PloS one, 2017

One of the main reasons for disease recurrence in the curative breast cancer treatment setting is the development of drug resistance. Microtubule targeted agents (MTAs) are among the most commonly used drugs for the treatment of breaset cancer and therefore overcoming taxane resistance is of primary clinical importance. Our group has previously demonstrated that the microtubule dynamics of docetaxel-resistant MCF-7TXT cells are insensitivity to docetaxel due to the distinct expression profiles of β-tubulin isotypes in addition to the high expression of p-glycoprotein (ABCB1). In the present investigation we examined whether taxane-resistant breast cancer cells are more sensitive to microtubule destabilizing agents including vinca alkaloids and colchicine-site binding agents (CSBAs) than the non-resistant cells. Two isogenic MCF-7 breast cancer cell lines were selected for resistance to docetaxel (MCF-7TXT) and the wild type parental cell line (MCF-7CC) to examine if taxane-resistant...

Microtubule assembly dynamics: An attractive target for anticancer drugs

IUBMB Life, 2008

Microtubules, composed of ab tubulin dimers, are dynamic polymers of eukaryotic cells. They play important roles in various cellular functions including mitosis. Microtubules exhibit differential dynamic behaviors during different phases of the cell cycle. Inhibition of the microtubule assembly dynamics causes cell cycle arrest leading to apoptosis; thus, qualifying them as important drug targets for treating several diseases including cancer, neuronal, fungal, and parasitic diseases. Although several microtubuletargeted drugs are successfully being used in cancer chemotherapy, the development of resistance against these drugs and their inherent toxicities warrant the development of new agents with improved efficacy. Several antimicrotubule agents are currently being evaluated for their possible uses in cancer chemotherapy. Benomyl, griseofulvin, and sulfonamides have been used as antifungal and antibacterial drugs. Recent reports have shown that these drugs have potent antitumor potential. These agents are shown to inhibit proliferation of different types of tumor cells and induce apoptosis by targeting microtubule assembly dynamics. However, unlike vincas and taxanes, which inhibit cancer cell proliferation in nanomolar concentration range, these agents act in micromolar range and are considered to have limited toxicities. Here, we suggest that these drugs may have a significant use in cancer chemotherapy when used in combination with other anticancer drugs.

Drugs that target dynamic microtubules: A new molecular perspective

Medicinal Research …, 2011

Microtubules have long been considered an ideal target for anticancer drugs because of the essential role they play in mitosis, forming the dynamic spindle apparatus. As such, there is a wide variety of compounds currently in clinical use and in development that act as antimitotic agents by altering microtubule dynamics. Although these diverse molecules are known to affect microtubule dynamics upon binding to one of the three established drug domains (taxane, vinca alkaloid, or colchicine site), the exact mechanism by which each drug works is still an area of intense speculation and research. In this study, we review the effects of microtubule-binding chemotherapeutic agents from a new perspective, considering how their mode of binding induces conformational changes and alters biological function relative to the molecular vectors of microtubule assembly or disassembly. These "biological vectors" can thus be used as a spatiotemporal context to describe molecular mechanisms by which microtubule-targeting drugs work.

Selective Targeting of Tumorigenic Cancer Cell Lines by Microtubule Inhibitors

PLoS ONE, 2009

For anticancer drug therapy, it is critical to kill those cells with highest tumorigenic potential, even when they comprise a relatively small fraction of the overall tumor cell population. We have used the established NCI/DTP 60 cell line growth inhibition assay as a platform for exploring the relationship between chemical structure and growth inhibition in both tumorigenic and non-tumorigenic cancer cell lines. Using experimental measurements of ''take rate'' in ectopic implants as a proxy for tumorigenic potential, we identified eight chemical agents that appear to strongly and selectively inhibit the growth of the most tumorigenic cell lines. Biochemical assay data and structure-activity relationships indicate that these compounds act by inhibiting tubulin polymerization. Yet, their activity against tumorigenic cell lines is more selective than that of the other microtubule inhibitors in clinical use. Biochemical differences in the tubulin subunits that make up microtubules, or differences in the function of microtubules in mitotic spindle assembly or cell division may be associated with the selectivity of these compounds.

Two antagonistic microtubule targeting drugs act synergistically to kill cancer cells

Paclitaxel is a microtubule stabilizing agent and a successful drug for cancer chemotherapy inducing, however, adverse effects. To reduce the effective dose of paclitaxel, we searched for drugs which could potentiate its therapeutic effect. We have screened a chemical library and selected Carba1, a carbazolone, which exerts synergistic cytotoxic effects on tumor cells grown in vitro, when co-administrated with a low dose of paclitaxel. Carba1 targets the colchicine binding-site of tubulin and is a microtubule-destabilizing agent. The Carba1-induced modulation of microtubule dynamics increases the accumulation of fluorescent paclitaxel inside microtubules, providing a mechanistic explanation of the observed synergy between Carba1 and paclitaxel. The synergistic effect of Carba1 with paclitaxel on tumor cell viability was also observed in vivo in xenografted mice. Thus, a new mechanism favoring paclitaxel accumulation in microtubules can be transposed to in vivo mouse cancer treatment...