A review of cathode and anode materials for lithium-ion batteries (original) (raw)
Related papers
Cathode Materials for Lithium-ion Batteries: A Brief Review
Journal of New Materials for Electrochemical Systems, 2021
Layered lithium cobalt oxide (LiCoO 2 ) as a pioneer commercial cathode for lithium-ion batteries (LIBs) is unsuitable for the next generation of LIBs, which require high energy density, good rate performance, improved safety, low cost, and environmental friendliness. LiCoO 2 suffers from structural instability at a high level of delithiation and performance degradation when overcharged. Besides, cobalt, a significant constituent of LiCoO 2 is more costly and less environmentally friendly than other transition metals. Therefore, alternative cathode materials are being explored to replace LiCoO 2 as cathode materials for high-performance LIBs. These new cathode materials, including lithiated transition metal oxides, vanadium pentoxides, and polyanion-type materials, are reviewed in this study. The various challenges hampering the full integration of these cathode materials in commercial LIBs and viable solutions are emphasised.
Recent Advances on Materials for Lithium-Ion Batteries
Energies
Environmental issues related to energy consumption are mainly associated with the strong dependence on fossil fuels. To solve these issues, renewable energy sources systems have been developed as well as advanced energy storage systems. Batteries are the main storage system related to mobility, and they are applied in devices such as laptops, cell phones, and electric vehicles. Lithium-ion batteries (LIBs) are the most used battery system based on their high specific capacity, long cycle life, and no memory effects. This rapidly evolving field urges for a systematic comparative compilation of the most recent developments on battery technology in order to keep up with the growing number of materials, strategies, and battery performance data, allowing the design of future developments in the field. Thus, this review focuses on the different materials recently developed for the different battery components—anode, cathode, and separator/electrolyte—in order to further improve LIB system...
PROMISING CATHODE MATERIALS FOR RECHARGEABLE LITHIUM-ION BATTERIES: A REVIEW
Journal of Sustainable Energy, 2023
The lithium-ion battery (LIB) technology is getting particular attention because of its effectiveness in small-scale-electronic products such as watches, calculators, torchlights, or mobile phones through to large-scale power systems such as automobiles, trains, ships, submarines, or airplanes. LIBs are widely applied due to their advantages which make them unique. They exhibit greater energy density than other types of rechargeable batteries. LIBs are lightweight with a limited rate of charge loss, a greater number of charge/discharge cycles, no complete discharge is needed, and LIBs function at a higher voltage than other rechargeable batteries. However, LIB is suffering from many disadvantages such as the high risk of bursting, high cost compared to other batteries, battery deterioration after a complete discharge, high sensitivity to high temperatures (fast degradation when exposed to heat), poor rate of capability, very limited lifespan (2-3 years) and not available in standard cells sizes like others. A good choice of cathode materials leads to enhanced performance in LIBs. This work involves a deep comprehension of Liion transport, as well as the mechanism of charge and discharge in LIBs. The impact of the electrode surface and a brief review of the advanced cathode materials for LIBs have been also reported. This work aims to review the latest research works and the progress of advanced cathode materials helping to make higherperformance LIBs for future generations.
Comparative Issues of Cathode Materials for Li-Ion Batteries
Inorganics, 2014
After an introduction to lithium insertion compounds and the principles of Li-ion cells, we present a comparative study of the physical and electrochemical properties of positive electrodes used in lithium-ion batteries (LIBs). Electrode materials include three different classes of lattices according to the dimensionality of the Li + ion motion in them: olivine, layered transition-metal oxides and spinel frameworks. Their advantages and disadvantages are compared with emphasis on synthesis difficulties, electrochemical stability, faradaic performance and security issues.
Recent developments in advanced anode materials for lithium-ion batteries
Energy Materials, 2021
The rapid expansion of electric vehicles and mobile electronic devices is the main driver for the improvement of advanced high-performance lithium-ion batteries (LIBs). The electrochemical performance of LIBs depends on the specific capacity, rate performance and cycle stability of the electrode materials. In terms of the enhancement of LIB performance, the improvement of the anode material is significant compared with the cathode material. There are still some challenges in producing an industrial anode material that is superior to commercial graphite. Based on the different electrochemical reaction mechanisms of anode materials for LIBs during charge and discharge, the advantages/disadvantages and electrochemical reaction mechanisms of intercalation-, conversion- and alloying-type anode materials are summarized in detail here. The methods and strategies for improving the electrochemical performance of different types of anode materials are described in detail. Finally, challenges ...
2020
This article reviews the development of cathode materials for secondary lithium ion batteries since its inception with the introduction of lithium cobalt oxide in early 1980s. The time has passed and numerous cathode materials are designed and developed to realize not only the enhanced capacity but also the power density simultaneously. However, there are numerous challenges such as the cyclic stability of cathode materials, their structural and thermal stability, higher operating voltage together with high ionic and electronic conductivity for efficient ion and charge transport during charging and discharging. This article will cover the development of materials in chronological order classifying as the lithium ion cathode materials in different generations. The ternary oxides such as LiTMOx (TM=Transition Metal) are considered as the first generation materials, whereas modified ternary and quaternary oxide systems are considered as the second generation materials. The current i.e....
A critical evaluation of cathode materials for lithium-ion electric vehicle batteries
There has been an intensive research and development focus on Lithium-ion batteries, which has revolutionized the electric vehicle market due to the batteries’ high energy and power density, longer lifespan and increased safety than comparable rechargeable battery technologies. The performance of lithium-ion batteries is achieved by packaging design, electrolyte and electrodes material’s selection. This study focuses on cathode materials as they currently need to overcome critical challenges. In fact, cathode materials affect energy density, rate capability and working voltage that led to the cathode currently costing twice as much as the anode. For this reason this study reviews the cathode materials for electric vehicle lithium-ion batteries under economic and environmental perspectives to optimize the batteries’ structures and properties. Further, installed lithium-ion batteries within the commercial electric vehicle market are compared and measured against suggested economic and...
Study of Cathode Materials for Lithium-Ion Batteries: Recent Progress and New Challenges
Inorganics
Amongst a number of different cathode materials, the layered nickel-rich LiNi y Co x Mn 1−y−x O 2 and the integrated lithium-rich xLi 2 MnO 3 •(1 − x)Li[Ni a Co b Mn c ]O 2 (a + b + c = 1) have received considerable attention over the last decade due to their high capacities of~195 and~250 mAh•g −1 , respectively. Both materials are believed to play a vital role in the development of future electric vehicles, which makes them highly attractive for researchers from academia and industry alike. The review at hand deals with both cathode materials and highlights recent achievements to enhance capacity stability, voltage stability, and rate capability, etc. The focus of this paper is on novel strategies and established methods such as coatings and dopings.