Mixture Models for Exploring Local PCA Structures (original) (raw)

Almost autonomous training of mixtures of principal component analyzers

Mohamed Musa

Pattern Recognition Letters, 2004

View PDFchevron_right

Supervised principal component analysis: Visualization, classification and regression on subspaces and submanifolds

Ali Ghodsi

Pattern Recognition, 2011

View PDFchevron_right

Covariance-Based PCA for Multi-size Data

Drew Duncan

2014 22nd International Conference on Pattern Recognition, 2014

View PDFchevron_right

Automatic Model Selection by Cross-Validation for Probabilistic PCA

J. Ortiz-de-lazcano-lobato, Ezequiel López-Rubio

Neural Processing Letters, 2009

View PDFchevron_right

Mixture of Bilateral-Projection Two-Dimensional Probabilistic Principal Component Analysis

Junbin Gao

2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2016

View PDFchevron_right

A Review of Principal Component Analysis Algorithm for Dimensionality Reduction

Adnan Mohsin Abdulazeez

Journal of Soft Computing and Data Mining, 2021

View PDFchevron_right

Bayesian Dimensionality Reduction With PCA Using Penalized Semi-Integrated Likelihood

Malgorzata Bogdan

Journal of Computational and Graphical Statistics, 2017

View PDFchevron_right

Principal Component Analysis -A Tutorial

Alaa Tharwat

View PDFchevron_right

Principal Component Analysis: A Natural Approach to Data Exploration

Felipe Lucas

2018

View PDFchevron_right

Bayesian principal component analysis

Prem Goel

Journal of Chemometrics, 2002

View PDFchevron_right

A pooled subspace mixture density model for pattern classification in high-dimensional spaces

Cheng-Lin Liu

2008 IEEE International Joint Conference on Neural Networks (IEEE World Congress on Computational Intelligence), 2008

View PDFchevron_right

Data dimensional reduction and principal components analysis

Nema Salem

Procedia Computer Science, 2019

View PDFchevron_right

Generalized Principal Component Analysis (GPCA

René Vidal

2003

View PDFchevron_right

Local Component Analysis

Nicolas Le Roux

Arxiv preprint arXiv:1109.0093, 2011

View PDFchevron_right

Integrative and regularized principal component analysis of multiple sources of data

Xiaotong Shen

Statistics in medicine, 2016

View PDFchevron_right

Supervised probabilistic principal component analysis

Shipeng Yu, Volker Tresp

Proceedings of the 12th ACM SIGKDD international conference on Knowledge discovery and data mining - KDD '06, 2006

View PDFchevron_right

Maximum likelihood principal component analysis

Klaas Faber

Journal of …, 1997

View PDFchevron_right

An algorithm for unsupervised learning via normal mixture models

Geoff McLachlan

1996

View PDFchevron_right

Demixed Principal Component Analysis

Ranulfo Romo, Wieland Brendel

View PDFchevron_right

Non-Gaussian Component Analysis: a Semiparametric Framework for Linear Dimension Reduction

Vladimir Spokoiny

2006

View PDFchevron_right

A general procedure for learning mixtures of independent component analyzers

Addisson Salazar

Pattern Recognition, 2010

View PDFchevron_right

Linear Dimensionality Reduction: Survey, Insights, and Generalizations

Iohana Lima de Barros

View PDFchevron_right

Gaussian Mixture Modeling with Gaussian Process Latent Variable Models

Hannes Nickisch

View PDFchevron_right

Classification of hyperspectral images using mixture of probabilistic PCA models

Aydin Akan

2016

View PDFchevron_right

KERNEL METHODS FOR PRINCIPAL COMPONENT ANALYSIS (PCA) A comparative study of classical and kernel pca

Kenneth Ezukwoke, Samaneh Zareian

View PDFchevron_right

Gaussian Mixture Modeling by Exploiting the Mahalanobis Distance

Constantine Kotropoulos

IEEE Transactions on Signal Processing, 2008

View PDFchevron_right

Heterogeneous Component Analysis

Shigeyuki Oba

View PDFchevron_right

Probabilistic principal component subspaces: a hierarchical finite mixture model for data visualization

Sun-yuan Kung

IEEE Transactions on Neural Networks, 2000

View PDFchevron_right

The use of kernel principal component analysis to model data distributions

Chelabi Mohamed

Pattern Recognition, 2003

View PDFchevron_right

Principal component analysis

Lynne J. Williams

View PDFchevron_right

Coordinating Principal Component Analyzers

Ben Kröse

Int. Conference on Artificial Neural Networks, 2002

View PDFchevron_right

Adaptive Mixtures of Factor Analyzers

Heysem Kaya

View PDFchevron_right