Ferroptosis Research Papers - Academia.edu (original) (raw)

Apoptosis is one type of programmed cell death. Increasingly, non-apoptotic cell death is recognized as being genetically controlled, or 'regulated'. However, the full extent and diversity of alternative cell death mechanisms remain... more

Apoptosis is one type of programmed cell death. Increasingly, non-apoptotic cell death is recognized as being genetically controlled, or 'regulated'. However, the full extent and diversity of alternative cell death mechanisms remain uncharted. Here we surveyed the landscape of pharmacologically accessible cell death mechanisms. In an examination of 56 caspase-independent lethal compounds, modulatory profiling showed that 10 compounds induced three different types of regulated non-apoptotic cell death. Optimization of one of those ten resulted in the discovery of FIN56, a specific inducer of ferroptosis. Ferroptosis has been found to occur when the lipid-repair enzyme GPX4 is inhibited. FIN56 promoted degradation of GPX4. FIN56 also bound to and activated squalene synthase, an enzyme involved in isoprenoid biosynthesis, independent of GPX4 degradation. These discoveries show that dysregulation of lipid metabolism is associated with ferroptosis. This systematic approach is a means to discover and characterize novel cell death phenotypes.

Ischemic heart disease is a leading cause of death worldwide. Primarily, ischemia causes decreased oxygen supply, resulting in damage of the cardiac tissue. Naturally, reoxygenation has been recognized as the treatment of choice to... more

Ischemic heart disease is a leading cause of death worldwide. Primarily, ischemia causes decreased oxygen supply, resulting in damage of the cardiac tissue. Naturally, reoxygenation has been recognized as the treatment of choice to recover blood flow through primary percutaneous coronary intervention. This treatment is the gold standard therapy to restore blood flow, but paradoxically it can also induce tissue injury. A number of different studies in animal models of acute myocardial infarction (AMI) suggest that ischemia-reperfusion injury (IRI) accounts for up to 50% of the final myocardial infarct size. Oxidative stress plays a critical role in the pathological process. Iron is an essential mineral required for a variety of vital biological functions but also has potentially toxic effects. A detrimental process induced by free iron is ferroptosis, a non-apoptotic type of programmed cell death. Accordingly, efforts to prevent ferroptosis in pathological settings have focused on th...

Corneal transparency is maintained by a monolayer of corneal endothelial cells. Defects in corneal endothelial cells (CEnCs) can be rectified surgically through transplantation. Fuchs' endothelial corneal dystrophy (FECD) is the foremost... more

Corneal transparency is maintained by a monolayer of corneal endothelial cells. Defects in corneal endothelial cells (CEnCs) can be rectified surgically through transplantation. Fuchs' endothelial corneal dystrophy (FECD) is the foremost cause of endothelial dysfunction and the leading indication for transplantation. Increased sensitivity of CEnCs to oxidative stress is thought to contribute to the pathogenesis of FECD through increased apoptosis. In part, this is thought to be due to loss of NRF2 expression: a global regulator of oxidative stress. We demonstrate that expression of the redox sensor, peroxiredoxin 1 (PRDX1) is selectively lost from CEnCs in FECD patient samples. We reveal that expression of PRDX1 is necessary to control the response of CEnCs to agents that cause lipid peroxidation. Iron-dependent lipid peroxidation drives non-apoptotic cell death termed ferroptosis. We establish that the inhibitor of ferroptosis, ferrostatin-1 rescues lipid peroxidation and cell death in CEnCs. Furthermore, we provide evidence that the transcription factor NRF2 similarly regulates lipid peroxidation in CEnCs.

Ferroptosis is an iron-dependent programmed cell death event, whose regulation and physiological significance remain to be elucidated. Analyzing transcriptional responses of mouse embryonic fibroblasts exposed to the ferroptosis inducer... more

Ferroptosis is an iron-dependent programmed cell death event, whose regulation and physiological significance remain to be elucidated. Analyzing transcriptional responses of mouse embryonic fibroblasts exposed to the ferroptosis inducer erastin, here we found that a set of genes related to oxidative stress protection is induced upon ferroptosis. We considered that up-regulation of these genes attenuates ferroptosis induction and found that the transcription factor BTB domain andCNChomolog 1 (BACH1), a regulator in heme and iron metabolism, promotes ferroptosis by repressing the transcription of a subset of the erastin-induced protective genes.Wenoted that these genes are involved in the synthesis of GSH or metabolism of intracellular labile iron and include glutamate-cysteine ligase modifier subunit (Gclm), solute carrier family 7 member 11 (Slc7a11), ferritin heavy chain 1 (Fth1), ferritin light chain1 (Ftl1), and solute carrier family 40 member1 (Slc40a1). Ferroptosis has also been previously shown to induce cardiomyopathy, and here we observed that Bach1/ mice are more resistant to myocardial infarction than WT mice and that the severity of ischemic injury is decreased by the iron-chelator deferasirox, which suppressed ferroptosis. Our findings suggest that BACH1 represses genes that combat labile iron-induced oxidative stress, and ferroptosis is stimulated at the transcriptional level by BACH1 upon disruption of the balance between the transcriptional induction of protective genes and accumulation of iron-mediated damage.Wepropose that BACH1 controls the threshold of ferroptosis induction and may represent a therapeutic target for alleviating ferroptosis-related diseases, including myocardial infarction.

Precision medicine in oncology requires not only identification of cancer-associated mutations but also effective drugs for each cancer genotype, which is still a largely unsolved problem. One approach for the latter challenge has been... more

Precision medicine in oncology requires not only identification of cancer-associated mutations but also effective drugs for each cancer genotype, which is still a largely unsolved problem. One approach for the latter challenge has been large-scale testing of small molecules in genetically characterized cell lines. We hypothesized that compounds with high cell-line-selective lethality exhibited consistent results across such pharmacogenomic studies. We analyzed the compound sensitivity data of 6,259 lethal compounds from the NCI-60 project. A total of 2,565 cell-line-selective lethal compounds were identified and grouped into 18 clusters based on their median growth inhibitory GI50 profiles across the 60 cell lines, which were shown to represent distinct mechanisms of action. Further transcriptome analysis revealed a biomarker, NADPH abundance, for predicting sensitivity to ferroptosis-inducing compounds, which we experimentally validated. In summary, incorporating cell-line-selectivity filters improves the predictive power of pharmacogenomic analyses and enables discovery of biomarkers that predict the sensitivity of cells to specific cell death inducers.

Ferroptosis is sort of programmed necrobiosis characterized by the involvement of labile iron the buildup of super molecule peroxidation. Ferroptosis could also be provoke by aerophilic stresses or numerous chemical agents that inhibit... more

Ferroptosis is sort of programmed necrobiosis characterized by the involvement of labile iron the buildup of super
molecule peroxidation. Ferroptosis could also be provoke by aerophilic stresses or numerous chemical agents that inhibit with
cellular protecting mechanism. The super molecule peroxidation from aerophilic stresses achieve by NADPH oxidase(s) (noxs)
that's typically mended by peroxidase four (GPX4) victimization the glutathione as a co-factor. Therefore, Ferro ptosis are often
lured by wipe-out of amino acid (limiting part for glutathione synthesis), restraint of GPX4, or activation of noxs. As an
example, the canonical Ferro ptosis inducer, elastin, is an interception of aminoalkanoic acid-glutamate transporter (xct) that
lower cysteine import and depletes glutathione1. The connectedness of Ferro ptosis human diseases, also as cancer, ischemiareperfusion, neurodegeneration is currently inheritable attention. Inducing Ferro ptosis also can have therapeutic potential
toward cancer. However, the biological progresses, the underlying mechanisms and regulators of Ferro ptosis stay unknown