The rise and fall of proboscidean ecological diversity (original) (raw)

References

  1. Surovell, T., Waguespack, N. & Brantingham, P. J. Global archaeological evidence for proboscidean overkill. Proc. Natl Acad. Sci. USA 102, 6231–6236 (2005).
    Article CAS PubMed PubMed Central Google Scholar
  2. Smith, F. A., Smith, R. E. E., Lyons, S. K. & Payne, J. L. Body size downgrading of mammals over the late Quaternary. Science 360, 310–313 (2018).
    Article CAS PubMed Google Scholar
  3. Faith, J. T., Rowan, J., Du, A. & Barr, W. A. The uncertain case for human-driven extinctions prior to Homo sapiens. Quat. Res. 96, 88–104 (2020).
    Article Google Scholar
  4. Cuvier, G. Mémoires sur les Espèces d’Éléphants Vivants et Fossiles. Mémoires de l’Institut des Sciences et Arts 2, 1–22 (1800); https://www.biodiversitylibrary.org/page/16303001#page/175/mode/1up
  5. Osborn, H. F. The ancestral tree of the Proboscidea. Discovery, evolution, migration and extinction over a 50,000,000 year period. Proc. Natl Acad. Sci. USA 21, 404–412 (1935).
    Article CAS PubMed PubMed Central Google Scholar
  6. International Union for Conservation of Nature. The IUCN Red List of Threatened Species Version 2021-1 (IUCN, 2021); https://www.iucnredlist.org
  7. Maglio, V. J. Origin and evolution of the Elephantidae. Trans. Am. Philos. Soc. 63, 1–149 (1973).
    Article Google Scholar
  8. Zhang, H., Wang, Y., Janis, C. M., Goodall, R. H. & Purnell, M. A. An examination of feeding ecology in Pleistocene proboscideans from southern China (Sinomastodon, Stegodon, Elephas), by means of dental microwear texture analysis. Quat. Int. 445, 60–70 (2017).
    Article Google Scholar
  9. Saegusa, H. Stegodontidae and Anancus: keys to understanding dental evolution in Elephantidae. Quat. Sci. Rev. 231, 106176 (2020).
    Article Google Scholar
  10. Hempson, G. P., Archibald, S. & Bond, W. J. A continent-wide assessment of the form and intensity of large mammal herbivory in Africa. Science 350, 1056–1061 (2015).
    Article CAS PubMed Google Scholar
  11. Silvestro, D., Salamin, N., Antonelli, A. & Meyer, X. Improved estimation of macroevolutionary rates from fossil data using a Bayesian framework. Paleobiology 45, 546–570 (2019).
    Article Google Scholar
  12. Clavel, J., Escarguel, G. & Merceron, G. mvMORPH: an R package for fitting multivariate evolutionary models to morphometric data. Methods Ecol. Evol. 6, 1311–1319 (2015).
    Article Google Scholar
  13. Cantalapiedra, J. L., Hernández Fernández, M., Azanza, B. & Morales, J. Congruent phylogenetic and fossil signatures of mammalian diversification dynamics driven by Tertiary abiotic change. Evolution 69, 2941–2953 (2015).
    Article PubMed Google Scholar
  14. Silvestro, D., Antonelli, A., Salamin, N. & Quental, T. B. The role of clade competition in the diversification of North American canids. Proc. Natl Acad. Sci. USA 112, 8684–8689 (2015).
    Article CAS PubMed PubMed Central Google Scholar
  15. Sepkoski, J. J. A kinetic model of Phanerozoic taxonomic diversity I. Analysis of marine orders. Paleobiology 4, 223–251 (1978).
    Article Google Scholar
  16. Tassy, P. in European Neogene Mammal Chronology (eds Lindsay, E. H. et al.) 237–252 (Plenus Press, 1989).
  17. van der Made, J. in Elefantentreich: eine Fossilwelt in Europa (ed. Meller, H.) 340–360 (Landesamt für Denkmalpflege und Archäologie Sachsen-Anhalt-Landesmuseum für Vorgeschichte, 2010).
  18. Saarinen, J. J. et al. Patterns of maximum body size evolution in Cenozoic land mammals: eco-evolutionary processes and abiotic forcing. Proc. Biol. Sci. 281, 20132049 (2014).
    PubMed PubMed Central Google Scholar
  19. Fortelius, M. et al. Evolution of Neogene mammals in Eurasia: environmental forcing and biotic interactions. Annu. Rev. Earth Planet Sci. 42, 579–604 (2014).
    Article CAS Google Scholar
  20. Marshall, C. R. & Quental, T. B. The uncertain role of diversity dependence in species diversification and the need to incorporate time-varying carrying capacities. Philos. Trans. R. Soc. Lond. B 371, 20150217 (2016).
    Article CAS Google Scholar
  21. Vrba, E. S. Evolution, species and fossils: how does life evolve? S. Afr. J. Sci. 76, 61–84 (1980).
    Google Scholar
  22. Cantalapiedra, J. L., Prado, J. L., Hernández Fernández, M. & Alberdi, M. T. Decoupled ecomorphological evolution and diversification in Neogene-Quaternary horses. Science 355, 627–630 (2017).
    Article CAS PubMed Google Scholar
  23. Calandra, I., Göhlich, U. B. & Merceron, G. How could sympatric megaherbivores coexist? Example of niche partitioning within a proboscidean community from the Miocene of Europe. Naturwissenschaften 95, 831–838 (2008).
    Article CAS PubMed Google Scholar
  24. Sanders, W. J. Proboscidea from Kanapoi, Kenya. J. Hum. Evol. 140, 102547 (2020).
    Article PubMed Google Scholar
  25. Wang, S. et al. Evolution of Protanancus (Proboscidea, Mammalia) in East Asia. J. Vertebr. Paleontol. 35, e881830 (2015).
    Article Google Scholar
  26. Lister, A. M. The role of behaviour in adaptive morphological evolution of African proboscideans. Nature 500, 331–334 (2013).
    Article CAS PubMed Google Scholar
  27. Lister, A. M., Sher, A. V., van Essen, H. & Wei, G. The pattern and process of mammoth evolution in Eurasia. Quat. Int. 126, 49–64 (2005).
    Article Google Scholar
  28. Wei, G. et al. New materials of the steppe mammoth, Mammuthus trogontherii, with discussion on the origin and evolutionary patterns of mammoths. Sci. China Earth Sci. 53, 956–963 (2010).
    Article Google Scholar
  29. Stanley, S. M. Macroevolution: Patterns and Processes (W. H. Freeman and Company, 1979).
  30. Edwards, E. J. et al. The origins of C4 grasslands: integrating evolutionary and ecosystem science. Science 328, 587–591 (2010).
    Article CAS PubMed Google Scholar
  31. Faith, J. T., Rowan, J., Du, A. & Koch, P. L. Plio-Pleistocene decline of African megaherbivores: no evidence for ancient hominin impacts. Science 362, 938–941 (2018).
    Article CAS PubMed Google Scholar
  32. Kaya, F. et al. The rise and fall of the Old World savannah fauna and the origins of the African savannah biome. Nat. Ecol. Evol. 2, 241–246 (2018).
    Article PubMed Google Scholar
  33. Saarinen, J. & Lister, A. M. Dental mesowear reflects local vegetation and niche separation in Pleistocene proboscideans from Britain. J. Quat. Sci. 31, 799–808 (2016).
    Article Google Scholar
  34. Rivals, F., Semprebon, G. M. & Lister, A. M. Feeding traits and dietary variation in Pleistocene proboscideans: a tooth microwear review. Quat. Sci. Rev. 219, 145–153 (2019).
    Article Google Scholar
  35. Vrba, E. S. in Living Fossils (eds Eldredge, N. & Stanley, S. M.) 62–79 (Springer, 1984).
  36. Herrera‐Flores, J. A., Stubbs, T. L. & Benton, M. J. Macroevolutionary patterns in Rhynchocephalia: is the tuatara (Sphenodon punctatus) a living fossil? Palaeontology 60, 319–328 (2017).
    Article Google Scholar
  37. Todd, N. E. Trends in proboscidean diversity in the African Cenozoic. J. Mamm. Evol. 13, 1–10 (2006).
    Article Google Scholar
  38. Rivals, F., Mol, D., Lacombat, F., Lister, A. M. & Semprebon, G. M. Resource partitioning and niche separation between mammoths (Mammuthus rumanus and Mammuthus meridionalis) and gomphotheres (Anancus arvernensis) in the Early Pleistocene of Europe. Quat. Int. 379, 164–170 (2015).
    Article Google Scholar
  39. Sanders, W. J. & Haile-Selassie, Y. A new assemblage of mid-Pliocene proboscideans from the Woranso-Mille area, Afar region, Ethiopia: taxonomic, evolutionary, and paleoecological considerations. J. Mamm. Evol. 19, 105–128 (2012).
    Article Google Scholar
  40. van der Geer, A. A. E. et al. The effect of area and isolation on insular dwarf proboscideans. J. Biogeogr. 43, 1656–1666 (2016).
    Article Google Scholar
  41. Westerhold, T. et al. An astronomically dated record of Earth’s climate and its predictability over the last 66 million years. Science 369, 1383–1387 (2020).
    Article CAS PubMed Google Scholar
  42. Vrba, E. S. in African Biogeography, Climate Change, and Hominid Evolution (eds Bromage, T. G. & Shrenk, F.) 19–39 (Oxford Univ. Press, 1999).
  43. Stuart, A. J. Late Quaternary megafaunal extinctions on the continents: a short review. Geol. J. 50, 338–363 (2015).
    Article Google Scholar
  44. Jukar, A. M., Lyons, S. K., Wagner, P. J. & Uhen, M. D. Late Quaternary extinctions in the Indian subcontinent. Palaeogeogr. Palaeoclimatol. Palaeoecol. 562, 110137 (2021).
    Article Google Scholar
  45. Raup, D. M. Extinction: Bad Genes or Bad Luck? (Norton, 1991).
  46. Cantalapiedra, J. L. et al. Conserving evolutionary history does not result in greater diversity over geological time scales. Proc. Biol. Sci. 286, 20182896 (2019).
    CAS PubMed PubMed Central Google Scholar
  47. Ronquist, F. et al. MrBayes 3.2: Efficient Bayesian phylogenetic inference and model choice across a large model space. Syst. Biol. 61, 539–542 (2012).
    Article PubMed PubMed Central Google Scholar
  48. Hublin, J.-J. et al. New fossils from Jebel Irhoud, Morocco and the pan-African origin of Homo sapiens. Nature 546, 289–292 (2017).
    Article CAS PubMed Google Scholar
  49. O’Connell, J. F. et al. When did Homo sapiens first reach Southeast Asia and Sahul? Proc. Natl Acad. Sci. USA 115, 8482–8490 (2018).
    Article CAS PubMed PubMed Central Google Scholar
  50. Ardelean, C. F. et al. Evidence of human occupation in Mexico around the Last Glacial Maximum. Nature 584, 87–92 (2020).
    Article CAS PubMed Google Scholar
  51. Paradis, E. Analysis of Phylogenetics and Evolution with R (Springer, 2012).
  52. Revell, L. J. phytools: an R package for phylogenetic comparative biology (and other things). Methods Ecol. Evol. 3, 217–223 (2012).
    Article Google Scholar
  53. Bates, D., Mächler, M., Bolker, B. & Walker, S. Fitting linear mixed-effects models using lme4. J. Stat. Softw. 67, 1–48 (2015).
    Article Google Scholar
  54. MacLatchy, L. M., Desilva, J., Sanders, W. J. & Wood, B. in Cenozoic Mammals of Africa (eds Werdelin, L. & Sanders, W. J.) 471–545 (Univ. California Press, 2010).

Download references