Combination therapy for kidney disease in people with diabetes mellitus (original) (raw)
de Boer, I. H. et al. Temporal trends in the prevalence of diabetic kidney disease in the United States. JAMA305, 2532–2539 (2011). ArticlePubMedPubMed Central Google Scholar
de Boer, I. H., Group DER. Kidney disease and related findings in the diabetes control and complications trial/epidemiology of diabetes interventions and complications study. Diabetes Care37, 24–30 (2014). ArticlePubMed Google Scholar
Afkarian, M. et al. Clinical manifestations of kidney disease among US adults with diabetes, 1988-2014. JAMA316, 602–610 (2016). ArticlePubMedPubMed Central Google Scholar
Koye, D. N., Magliano, D. J., Nelson, R. G. & Pavkov, M. E. The global epidemiology of diabetes and kidney disease. Adv. Chronic Kidney Dis.25, 121–132 (2018). ArticlePubMedPubMed Central Google Scholar
Agrawal, L. et al. Intensive glycemic control improves long-term renal outcomes in type 2 diabetes in the Veterans Affairs Diabetes Trial (VADT). Diabetes Care42, e181–e182 (2019). ArticlePubMedPubMed Central Google Scholar
Lewis, E. J., Hunsicker, L. G., Bain, R. P. & Rohde, R. D. The effect of angiotensin-converting-enzyme inhibition on diabetic nephropathy. The Collaborative Study Group. N. Engl. J. Med.329, 1456–1462 (1993). ArticleCASPubMed Google Scholar
Lewis, E. J. et al. Renoprotective effect of the angiotensin-receptor antagonist irbesartan in patients with nephropathy due to type 2 diabetes. N. Engl. J. Med.345, 851–860 (2001). ArticleCASPubMed Google Scholar
Brenner, B. M. et al. Effects of losartan on renal and cardiovascular outcomes in patients with type 2 diabetes and nephropathy. N. Engl. J. Med.345, 861–869 (2001). ArticleCASPubMed Google Scholar
Fried, L. F. et al. Combined angiotensin inhibition for the treatment of diabetic nephropathy. N. Engl. J. Med.369, 1892–1903 (2013). ArticleCASPubMed Google Scholar
Parving, H. H. et al. Cardiorenal end points in a trial of aliskiren for type 2 diabetes. N. Engl. J. Med.367, 2204–2213 (2012). ArticleCASPubMed Google Scholar
de Zeeuw, D. et al. Bardoxolone methyl in type 2 diabetes and stage 4 chronic kidney disease. N. Engl. J. Med.369, 2492–2503 (2013). ArticlePubMedPubMed Central Google Scholar
Packham, D. K. et al. Sulodexide fails to demonstrate renoprotection in overt type 2 diabetic nephropathy. J. Am. Soc. Nephrol.23, 123–130 (2012). ArticleCASPubMed Google Scholar
The E-KCG. et al. Empagliflozin in patients with chronic kidney disease. N. Engl. J. Med.388, 117–127 (2023). Article Google Scholar
Perkovic, V. et al. Canagliflozin and renal outcomes in type 2 diabetes and nephropathy. N. Engl. J. Med.380, 2295–2306 (2019). ArticleCASPubMed Google Scholar
Heerspink, H. J. L. et al. Dapagliflozin in patients with chronic kidney disease. N. Engl. J. Med.383, 1436–1446 (2020). ArticleCASPubMed Google Scholar
Bakris, G. L. et al. Effect of finerenone on chronic kidney disease outcomes in type 2 diabetes. N. Engl. J. Med.383, 2219–2229 (2020). ArticleCASPubMed Google Scholar
Heerspink, H. J. L. et al. Atrasentan and renal events in patients with type 2 diabetes and chronic kidney disease (SONAR): a double-blind, randomised, placebo-controlled trial. Lancet393, 1937–1947 (2019). ArticleCASPubMed Google Scholar
Menke, A., Casagrande, S., Geiss, L. & Cowie, C. C. Prevalence of and trends in diabetes among adults in the United States, 1988–2012. JAMA314, 1021–1029 (2015). ArticleCASPubMed Google Scholar
Jager, K. J. et al. A single number for advocacy and communication-worldwide more than 850 million individuals have kidney diseases. Kidney Int.96, 1048–1050 (2019). ArticlePubMed Google Scholar
Toppe, C. et al. Decreasing cumulative incidence of end-stage renal disease in young patients with type 1 diabetes in Sweden: a 38-year prospective nationwide study. Diabetes Care42, 27–31 (2019). ArticlePubMed Google Scholar
Gregg, E. W., Hora, I. & Benoit, S. R. Resurgence in diabetes-related complications. JAMA321, 1867–1868 (2019). ArticlePubMed Google Scholar
Narres, M. et al. Incidence and relative risk of renal replacement therapy in people with and without diabetes between 2002 and 2016 in a German region. Diabetologia63, 648–658 (2020). ArticlePubMed Google Scholar
Koye, D. N. et al. Trends in incidence of ESKD in people with type 1 and type 2 diabetes in Australia, 2002–2013. Am. J. Kidney Dis.73, 300–308 (2019). ArticlePubMed Google Scholar
Wu, H. et al. Trends in kidney failure and kidney replacement therapy in people with diabetes in Hong Kong, 2002–2015: a retrospective cohort study. Lancet Reg. Health West Pac.11, 100165 (2021). PubMedPubMed Central Google Scholar
Harding, J. L., Pavkov, M. E., Magliano, D. J., Shaw, J. E. & Gregg, E. W. Global trends in diabetes complications: a review of current evidence. Diabetologia62, 3–16 (2019). ArticlePubMed Google Scholar
Fox, C. S. et al. Associations of kidney disease measures with mortality and end-stage renal disease in individuals with and without diabetes: a meta-analysis. Lancet380, 1662–1673 (2012). ArticlePubMedPubMed Central Google Scholar
Wen, C. P. et al. Diabetes with early kidney involvement may shorten life expectancy by 16 years. Kidney Int.92, 388–396 (2017). ArticlePubMed Google Scholar
Fiorentino, M. et al. Renal biopsy in patients with diabetes: a pooled meta-analysis of 48 studies. Nephrol. Dial. Transpl.32, 97–110 (2017). CAS Google Scholar
Fioretto, P. et al. Patterns of renal injury in NIDDM patients with microalbuminuria. Diabetologia39, 1569–1576 (1996). ArticleCASPubMed Google Scholar
Jin, Q. et al. Nonalbuminuric diabetic kidney disease and risk of all-cause mortality and cardiovascular and kidney outcomes in type 2 diabetes: findings from the Hong Kong Diabetes Biobank. Am. J. Kidney Dis.80, 196–206 e1 (2022). ArticleCASPubMed Google Scholar
Nosadini, R. et al. Course of renal function in type 2 diabetic patients with abnormalities of albumin excretion rate. Diabetes49, 476–484 (2000). ArticleCASPubMed Google Scholar
Fioretto, P., Steffes, M. W., Sutherland, D. E., Goetz, F. C. & Mauer, M. Reversal of lesions of diabetic nephropathy after pancreas transplantation. N. Engl. J. Med.339, 69–75 (1998). ArticleCASPubMed Google Scholar
Scholtes, R. A. et al. Renal haemodynamic and protective effects of renoactive drugs in type 2 diabetes: Interaction with SGLT2 inhibitors. Nephrology26, 377–390 (2021). ArticleCASPubMed Google Scholar
Scholtes, R. A. et al. Kidney hemodynamic effects of angiotensin receptor blockade, sodium-glucose cotransporter-2 inhibition alone, and their combination: a crossover randomized trial in people with type 2 diabetes. Circulation146, 1895–1897 (2022). ArticleCASPubMed Google Scholar
Romero, C. A., Orias, M. & Weir, M. R. Novel RAAS agonists and antagonists: clinical applications and controversies. Nat. Rev. Endocrinol.11, 242–252 (2015). ArticleCASPubMedPubMed Central Google Scholar
Rayego-Mateos, S. et al. Targeting inflammation to treat diabetic kidney disease: the road to 2030. Kidney Int.103, 282–296 (2023). ArticleCASPubMed Google Scholar
Ma, T. K., Kam, K. K., Yan, B. P. & Lam, Y. Y. Renin-angiotensin-aldosterone system blockade for cardiovascular diseases: current status. Br. J. Pharmacol.160, 1273–1292 (2010). ArticleCASPubMedPubMed Central Google Scholar
van Bommel, E. J. et al. SGLT2 inhibition in the diabetic kidney-from mechanisms to clinical outcome. Clin. J. Am. Soc. Nephrol.12, 700–710 (2017). ArticlePubMedPubMed Central Google Scholar
Persson, F. et al. Efficacy and safety of dapagliflozin by baseline glycemic status: a prespecified analysis from the DAPA-CKD trial. Diabetes Care44, 1894–1897 (2021). ArticleCASPubMedPubMed Central Google Scholar
van Bommel, E. J. M. et al. The renal hemodynamic effects of the SGLT2 inhibitor dapagliflozin are caused by post-glomerular vasodilatation rather than pre-glomerular vasoconstriction in metformin-treated patients with type 2 diabetes in the randomized, double-blind RED trial. Kidney Int.97, 202–212 (2020). ArticlePubMed Google Scholar
Cherney, D. Z. et al. Renal hemodynamic effect of sodium-glucose cotransporter 2 inhibition in patients with type 1 diabetes mellitus. Circulation129, 587–597 (2014). ArticleCASPubMed Google Scholar
Heerspink, H. J., Perkins, B. A., Fitchett, D. H., Husain, M. & Cherney, D. Z. Sodium glucose cotransporter 2 inhibitors in the treatment of diabetes mellitus: cardiovascular and kidney effects, potential mechanisms, and clinical applications. Circulation134, 752–772 (2016). ArticleCASPubMed Google Scholar
Nuffield Department of Population Health Renal Studies G, Consortium SiM-AC-RT. Impact of diabetes on the effects of sodium glucose co-transporter-2 inhibitors on kidney outcomes: collaborative meta-analysis of large placebo-controlled trials. Lancet400, 1788–1801 (2022). Article Google Scholar
Neuen, B. L. et al. Sodium-glucose cotransporter 2 inhibitors and risk of hyperkalemia in people with type 2 diabetes: a meta-analysis of individual participant data from randomized, controlled trials. Circulation145, 1460–1470 (2022). ArticleCASPubMed Google Scholar
Bolignano, D., Palmer, S. C., Navaneethan, S. D. & Strippoli, G. F. Aldosterone antagonists for preventing the progression of chronic kidney disease. Cochrane Database Syst. Rev.10, CD007004 (2014). Google Scholar
Alexandrou, M. E. et al. Effects of mineralocorticoid receptor antagonists in proteinuric kidney disease: a systematic review and meta-analysis of randomized controlled trials. J. Hypertens.37, 2307–2324 (2019). ArticleCASPubMed Google Scholar
Kolkhof, P. et al. Finerenone, a novel selective nonsteroidal mineralocorticoid receptor antagonist protects from rat cardiorenal injury. J. Cardiovasc. Pharmacol.64, 69–78 (2014). ArticleCASPubMed Google Scholar
Gerisch, M. et al. Biotransformation of finerenone, a novel nonsteroidal mineralocorticoid receptor antagonist, in dogs, rats, and humans, in vivo and in vitro. Drug Metab. Dispos.46, 1546–1555 (2018). ArticleCASPubMed Google Scholar
Agarwal, R. et al. Cardiovascular and kidney outcomes with finerenone in patients with type 2 diabetes and chronic kidney disease: the FIDELITY pooled analysis. Eur. Heart J.43, 474–484 (2022). ArticleCASPubMed Google Scholar
Ito, S. et al. Esaxerenone (CS-3150) in patients with type 2 diabetes and microalbuminuria (ESAX-DN): phase 3 randomized controlled clinical trial. Clin. J. Am. Soc. Nephrol.15, 1715–1727 (2020). ArticleCASPubMedPubMed Central Google Scholar
Barton, M. & Yanagisawa, M. Endothelin: 30 years from discovery to therapy. Hypertension74, 1232–1265 (2019). ArticleCASPubMed Google Scholar
Chung, E. Y. M., Badve, S. V., Heerspink, H. J. L. & Wong, M. G. Endothelin receptor antagonists in kidney protection for diabetic kidney disease and beyond? Nephrology28, 97–108 (2023). ArticleCASPubMed Google Scholar
Weber, M. A. et al. A selective endothelin-receptor antagonist to reduce blood pressure in patients with treatment-resistant hypertension: a randomised, double-blind, placebo-controlled trial. Lancet374, 1423–1431 (2009). ArticleCASPubMed Google Scholar
Muskiet, M. H. A. et al. GLP-1 and the kidney: from physiology to pharmacology and outcomes in diabetes. Nat. Rev. Nephrol.13, 605–628 (2017). ArticleCASPubMed Google Scholar
Drucker, D. J. Mechanisms of action and therapeutic application of glucagon-like peptide-1. Cell Metab.27, 740–756 (2018). ArticleCASPubMed Google Scholar
Sattar, N. et al. Cardiovascular, mortality, and kidney outcomes with GLP-1 receptor agonists in patients with type 2 diabetes: a systematic review and meta-analysis of randomised trials. Lancet Diabetes Endocrinol.9, 653–662 (2021). ArticleCASPubMed Google Scholar
Shaman, A. M. et al. Effect of the glucagon-like peptide-1 receptor agonists semaglutide and liraglutide on kidney outcomes in patients with type 2 diabetes: pooled analysis of SUSTAIN 6 and LEADER. Circulation145, 575–585 (2022). ArticleCASPubMed Google Scholar
Tuttle, K. R. et al. Post hoc analysis of SUSTAIN 6 and PIONEER 6 trials suggests that people with type 2 diabetes at high cardiovascular risk treated with semaglutide experience more stable kidney function compared with placebo. Kidney Int.103, 772–781 (2023). ArticlePubMed Google Scholar
Mann, J. F. E. et al. Liraglutide and renal outcomes in type 2 diabetes. N. Engl. J. Med.377, 839–848 (2017). ArticleCASPubMed Google Scholar
Mann, J. F. E. et al. Potential kidney protection with liraglutide and semaglutide: exploratory mediation analysis. Diabetes Obes. Metab.23, 2058–2066 (2021). ArticleCASPubMedPubMed Central Google Scholar
Muskiet, M. H. A. et al. Lixisenatide and renal outcomes in patients with type 2 diabetes and acute coronary syndrome: an exploratory analysis of the ELIXA randomised, placebo-controlled trial. Lancet Diabetes Endocrinol.6, 859–869 (2018). ArticleCASPubMed Google Scholar
Alicic, R. Z., Cox, E. J., Neumiller, J. J. & Tuttle, K. R. Incretin drugs in diabetic kidney disease: biological mechanisms and clinical evidence. Nat. Rev. Nephrol.17, 227–244 (2021). ArticleCASPubMed Google Scholar
Pichler, R., Afkarian, M., Dieter, B. P. & Tuttle, K. R. Immunity and inflammation in diabetic kidney disease: translating mechanisms to biomarkers and treatment targets. Am. J. Physiol. Renal Physiol.312, F716–F731 (2017). ArticleCASPubMed Google Scholar
Ronn, J., Jensen, E. P., Wewer Albrechtsen, N. J., Holst, J. J. & Sorensen, C. M. Glucagon-like peptide-1 acutely affects renal blood flow and urinary flow rate in spontaneously hypertensive rats despite significantly reduced renal expression of GLP-1 receptors. Physiol. Rep.5, e13503 (2017). ArticlePubMedPubMed Central Google Scholar
Gutzwiller, J. P. et al. Glucagon-like peptide 1 induces natriuresis in healthy subjects and in insulin-resistant obese men. J. Clin. Endocrinol. Metab.89, 3055–3061 (2004). ArticleCASPubMed Google Scholar
Muskiet, M. H. et al. Acute renal haemodynamic effects of glucagon-like peptide-1 receptor agonist exenatide in healthy overweight men. Diabetes Obes. Metab.18, 178–185 (2016). ArticleCASPubMed Google Scholar
Tonneijck, L. et al. Renal tubular effects of prolonged therapy with the GLP-1 receptor agonist lixisenatide in patients with type 2 diabetes mellitus. Am. J. Physiol. Renal Physiol.316, F231–F240 (2019). ArticlePubMed Google Scholar
Rossing, P. et al. The rationale, design and baseline data of FLOW, a kidney outcomes trial with once-weekly semaglutide in people with type 2 diabetes and chronic kidney disease. Nephrol. Dial. Transpl.38, 2041–2051 (2023). Article Google Scholar
A research study to find out how semaglutide works in the kidneys compared to placebo, in people with type 2 diabetes and chronic kidney disease (the REMODEL trial) (REMODEL). ClinicalTrials.govhttps://clinicaltrials.gov/study/NCT04865770 (2024).
Kalantar-Zadeh, K. & Fouque, D. Nutritional management of chronic kidney disease. N. Engl. J. Med.377, 1765–1776 (2017). ArticleCASPubMed Google Scholar
Suckling R. J., He F. J., Macgregor G. A. Altered dietary salt intake for preventing and treating diabetic kidney disease. Cochrane Database Syst. Rev. 2010:CD006763.
de Boer, I. H. et al. Executive summary of the 2020 KDIGO diabetes management in CKD guideline: evidence-based advances in monitoring and treatment. Kidney Int.98, 839–848 (2020). ArticlePubMed Google Scholar
Kwakernaak, A. J. et al. Effects of sodium restriction and hydrochlorothiazide on RAAS blockade efficacy in diabetic nephropathy: a randomised clinical trial. Lancet Diabetes Endocrinol.2, 385–395 (2014). ArticleCASPubMed Google Scholar
Dietary sodium intake effects on ertugliflozin-induced changes in GFR, renal oxygenation and systemic hemodynamics: the DESIGN study (DESIGN). ClinicalTrials.govhttps://clinicaltrials.gov/study/NCT05727579 (2023).
Yan, B., Su, X., Xu, B., Qiao, X. & Wang, L. Effect of diet protein restriction on progression of chronic kidney disease: a systematic review and meta-analysis. PLoS One13, e0206134 (2018). ArticlePubMedPubMed Central Google Scholar
Bosch, J. P. et al. Renal functional reserve in humans. Effect of protein intake on glomerular filtration rate. Am. J. Med.75, 943–950 (1983). ArticleCASPubMed Google Scholar
Look ARG. Effect of a long-term behavioural weight loss intervention on nephropathy in overweight or obese adults with type 2 diabetes: a secondary analysis of the Look AHEAD randomised clinical trial. Lancet Diabetes Endocrinol.2, 801–809 (2014). Article Google Scholar
Shulman, A. et al. Incidence of end-stage renal disease following bariatric surgery in the Swedish Obese Subjects Study. Int. J. Obes.42, 964–973 (2018). ArticleCAS Google Scholar
O’Hare, A. M., Tawney, K., Bacchetti, P. & Johansen, K. L. Decreased survival among sedentary patients undergoing dialysis: results from the dialysis morbidity and mortality study wave 2. Am. J. Kidney Dis.41, 447–454 (2003). ArticlePubMed Google Scholar
Wilkinson, T. J., McAdams-DeMarco, M., Bennett, P. N. & Wilund, K., Global Renal Exercise N. Advances in exercise therapy in predialysis chronic kidney disease, hemodialysis, peritoneal dialysis, and kidney transplantation. Curr. Opin. Nephrol. Hypertens.29, 471–479 (2020). ArticlePubMedPubMed Central Google Scholar
Zelle, D. M. et al. Physical inactivity: a risk factor and target for intervention in renal care. Nat. Rev. Nephrol.13, 318 (2017). ArticlePubMed Google Scholar
Efficacy of a high-intensity physical activity program on renal function in high risk patients with type 2 diabetes (ACTIDIANE). ClinicalTrials.govhttps://clinicaltrials.gov/study/NCT03184662 (2021).
Liu, J. et al. Multi-scalar data integration links glomerular angiopoietin-tie signaling pathway activation with progression of diabetic kidney disease. Diabetes71, 2664–2676 (2022). ArticleCASPubMedPubMed Central Google Scholar
Stefansson, V. T. N. et al. Molecular programs associated with glomerular hyperfiltration in early diabetic kidney disease. Kidney Int.102, 1345–1358 (2022). ArticleCASPubMedPubMed Central Google Scholar
Nair, V. et al. A molecular morphometric approach to diabetic kidney disease can link structure to function and outcome. Kidney Int.93, 439–449 (2018). ArticleCASPubMed Google Scholar
Sas, K. M. et al. Tissue-specific metabolic reprogramming drives nutrient flux in diabetic complications. JCI Insight1, e86976 (2016). ArticlePubMedPubMed Central Google Scholar
Wilson, P. C. et al. The single-cell transcriptomic landscape of early human diabetic nephropathy. Proc. Natl Acad. Sci. USA116, 19619–19625 (2019). ArticleCASPubMedPubMed Central Google Scholar
Wu, H. et al. Mapping the single-cell transcriptomic response of murine diabetic kidney disease to therapies. Cell Metab.34, 1064–78 e6 (2022). ArticleCASPubMedPubMed Central Google Scholar
Hodgin, J. B. et al. Identification of cross-species shared transcriptional networks of diabetic nephropathy in human and mouse glomeruli. Diabetes62, 299–308 (2013). ArticleCASPubMed Google Scholar
Brosius, F. C. III et al. Mouse models of diabetic nephropathy. J. Am. Soc. Nephrol.20, 2503–2512 (2009). ArticlePubMed Google Scholar
Kolkhof, P. et al. Effects of finerenone combined with empagliflozin in a model of hypertension-induced end-organ damage. Am. J. Nephrol.52, 642–652 (2021). ArticleCASPubMed Google Scholar
Vergara, A. et al. Enhanced cardiorenal protective effects of combining SGLT2 inhibition, endothelin receptor antagonism and RAS blockade in type 2 diabetic mice. Int. J. Mol. Sci.23, 12823 (2022). ArticleCASPubMedPubMed Central Google Scholar
Seidu, S., Kunutsor, S. K., Topsever, P. & Khunti, K. Benefits and harms of sodium-glucose co-transporter-2 inhibitors (SGLT2-I) and renin-angiotensin-aldosterone system inhibitors (RAAS-I) versus SGLT2-Is alone in patients with type 2 diabetes: a systematic review and meta-analysis of randomized controlled trials. Endocrinol. Diabetes Metab.5, e00303 (2022). ArticleCASPubMed Google Scholar
Lytvyn, Y. et al. Renal and vascular effects of combined SGLT2 and angiotensin-converting enzyme inhibition. Circulation146, 450–462 (2022). ArticleCASPubMedPubMed Central Google Scholar
Phadke, G. et al. Osmotic nephrosis and acute kidney injury associated with SGLT2 inhibitor use: a case report. Am. J. Kidney Dis.76, 144–147 (2020). ArticleCASPubMedPubMed Central Google Scholar
Hesp, A. C. et al. The role of renal hypoxia in the pathogenesis of diabetic kidney disease: a promising target for newer renoprotective agents including SGLT2 inhibitors? Kidney Int.98, 579–589 (2020). ArticleCASPubMedPubMed Central Google Scholar
Puglisi, S. et al. Effects of SGLT2 inhibitors and GLP-1 receptor agonists on renin-angiotensin-aldosterone system. Front. Endocrinol.12, 738848 (2021). Article Google Scholar
Jabbour, S. A. et al. Efficacy and safety over 2 years of exenatide plus dapagliflozin in the DURATION-8 study: a multicenter, double-blind, phase 3, randomized controlled trial. Diabetes Care43, 2528–2536 (2020). ArticleCASPubMedPubMed Central Google Scholar
Gerstein, H. C. et al. Cardiovascular and renal outcomes with efpeglenatide in type 2 diabetes. N. Engl. J. Med.385, 896–907 (2021). ArticleCASPubMed Google Scholar
Lam, C. S. P. et al. Efpeglenatide and clinical outcomes with and without concomitant sodium-glucose cotransporter-2 inhibition use in type 2 diabetes: exploratory analysis of the AMPLITUDE-O trial. Circulation145, 565–574 (2022). ArticleCASPubMed Google Scholar
van der Aart-van der Beek, A. B. et al. Albuminuria-lowering effect of dapagliflozin, exenatide, and their combination in patients with type 2 diabetes: a randomized cross-over clinical study. Diabetes Obes. Metab.25, 1758–1768 (2023). ArticlePubMed Google Scholar
van Ruiten, C. C. et al. Effect of exenatide twice daily and dapagliflozin, alone and in combination, on markers of kidney function in obese patients with type 2 diabetes: a prespecified secondary analysis of a randomized controlled clinical trial. Diabetes Obes. Metab.23, 1851–1858 (2021). ArticlePubMedPubMed Central Google Scholar
Gullaksen, S. et al. Separate and combined effects of semaglutide and empagliflozin on kidney oxygenation and perfusion in people with type 2 diabetes: a randomised trial. Diabetologia66, 813–825 (2023). ArticleCASPubMed Google Scholar
Wright, A. K. et al. Primary prevention of cardiovascular and heart failure events with SGLT2 inhibitors, GLP-1 receptor agonists, and their combination in type 2 diabetes. Diabetes Care45, 909–918 (2022). ArticleCASPubMed Google Scholar
Pitt, B. et al. Cardiovascular events with finerenone in kidney disease and type 2 diabetes. N. Engl. J. Med.385, 2252–2263 (2021). ArticleCASPubMed Google Scholar
Rossing, P. et al. Finerenone in patients with chronic kidney disease and type 2 diabetes by sodium-glucose cotransporter 2 inhibitor treatment: the FIDELITY analysis. Diabetes Care45, 2991–2998 (2022). ArticleCASPubMedPubMed Central Google Scholar
Rossing, P. et al. Finerenone in patients across the spectrum of chronic kidney disease and type 2 diabetes by glucagon-like peptide-1 receptor agonist use. Diabetes Obes. Metab.25, 407–416 (2023). ArticleCASPubMed Google Scholar
Provenzano, M. et al. Albuminuria-lowering effect of dapagliflozin, eplerenone, and their combination in patients with chronic kidney disease: a randomized crossover clinical trial. J. Am. Soc. Nephrol.33, 1569–1580 (2022). ArticleCASPubMedPubMed Central Google Scholar
A study to learn how well the treatment combination of finerenone and empagliflozin works and how safe it is compared to each treatment alone in adult participants with long-term kidney disease (chronic kidney disease) and type 2 diabetes (CONFIDENCE). ClinicalTrials.govhttps://clinicaltrials.gov/study/NCT05254002 (2024).
Heerspink, H. J. L., Kohan DE & de Zeeuw, D. New insights from SONAR indicate adding sodium glucose co-transporter 2 inhibitors to an endothelin receptor antagonist mitigates fluid retention and enhances albuminuria reduction. Kidney Int.99, 346–349 (2021). ArticleCASPubMed Google Scholar
Rosenstock, J. et al. Empagliflozin as adjunctive to insulin therapy in type 1 diabetes: the EASE trials. Diabetes Care41, 2560–2569 (2018). ArticleCASPubMed Google Scholar
Phillip, M. et al. Long-term efficacy and safety of dapagliflozin in patients with inadequately controlled type 1 diabetes: pooled 52-week outcomes from the DEPICT-1 and -2 studies. Diabetes Obes. Metab.23, 549–560 (2021). ArticleCASPubMed Google Scholar
Sands, A. T. et al. Sotagliflozin, a dual SGLT1 and SGLT2 inhibitor, as adjunct therapy to insulin in type 1 diabetes. Diabetes Care38, 1181–1188 (2015). ArticleCASPubMedPubMed Central Google Scholar
Garg, S. K. et al. Effects of sotagliflozin added to insulin in patients with type 1 diabetes. N. Engl. J. Med.377, 2337–2348 (2017). ArticleCASPubMed Google Scholar
Buse, J. B. et al. Sotagliflozin in combination with optimized insulin therapy in adults with type 1 diabetes: the North American inTandem1 study. Diabetes Care41, 1970–1980 (2018). ArticleCASPubMedPubMed Central Google Scholar
van Raalte, D. H. et al. The impact of sotagliflozin on renal function, albuminuria, blood pressure, and hematocrit in adults with type 1 diabetes. Diabetes Care42, 1921–1929 (2019). ArticlePubMedPubMed Central Google Scholar
Cherney, D. Z. I. et al. Kidney effects of empagliflozin in people with type 1 diabetes. Clin. J. Am. Soc. Nephrol.16, 1715–1719 (2021). ArticleCASPubMedPubMed Central Google Scholar
Stougaard, E. B., Rossing, P., Cherney, D., Vistisen, D. & Persson, F. Sodium-glucose cotransporter 2 inhibitors as adjunct therapy for type 1 diabetes and the benefit on cardiovascular and renal disease evaluated by Steno risk engines. J. Diabetes Complications36, 108257 (2022). ArticleCASPubMed Google Scholar
Wheeler, D. C. et al. Effects of dapagliflozin on major adverse kidney and cardiovascular events in patients with diabetic and non-diabetic chronic kidney disease: a prespecified analysis from the DAPA-CKD trial. Lancet Diabetes Endocrinol.9, 22–31 (2021). ArticleCASPubMed Google Scholar
A trial to learn how well finerenone works and how safe it is in adult participants with non-diabetic chronic kidney disease (FIND-CKD). ClinicalTrials.govhttps://clinicaltrials.gov/study/NCT05047263 (2024).
Davies, M. J. et al. Management of hyperglycemia in type 2 diabetes, 2022. A consensus report by the American Diabetes Association (ADA) and the European Association for the Study of Diabetes (EASD). Diabetes Care45, 2753–2786 (2022). ArticleCASPubMedPubMed Central Google Scholar
Kidney Disease: Improving Global Outcomes Diabetes Work G. KDIGO 2022 clinical practice guideline for diabetes management in chronic kidney disease. Kidney Int.102, S1–S127 (2022). Article Google Scholar
Joseph, J. J. et al. Comprehensive management of cardiovascular risk factors for adults with type 2 diabetes: a scientific statement from the American Heart Association. Circulation145, e722–e759 (2022). ArticlePubMed Google Scholar
Blonde, L. et al. American Association of Clinical Endocrinology clinical practice guideline: developing a diabetes mellitus comprehensive care plan — 2022 update. Endocr. Pract.28, 923–1049 (2022). ArticlePubMedPubMed Central Google Scholar
American Diabetes Association Professional Practice C. 11. Chronic kidney disease and risk management: standards of medical care in diabetes — 2022. Diabetes Care45, S175–S184 (2022). Article Google Scholar
de Boer, I. H. et al. Diabetes management in chronic kidney disease: a consensus report by the American Diabetes Association (ADA) and Kidney Disease: Improving Global Outcomes (KDIGO). Diabetes Care45, 3075–3090 (2022). ArticlePubMedPubMed Central Google Scholar
van der Sande, N. G. et al. Individualized prediction of the effect of angiotensin receptor blockade on renal and cardiovascular outcomes in patients with diabetic nephropathy. Diabetes Obes. Metab.18, 1120–1127 (2016). ArticlePubMed Google Scholar
Tye, S. C. et al. Initiation of the SGLT2 inhibitor canagliflozin to prevent kidney and heart failure outcomes guided by HbA1c, albuminuria, and predicted risk of kidney failure. Cardiovasc. Diabetol.21, 194 (2022). ArticleCASPubMedPubMed Central Google Scholar
Chertow, G. M. et al. Effects of dapagliflozin in chronic kidney disease, with and without other cardiovascular medications: DAPA-CKD trial. J. Am. Heart Assoc.12, e028739 (2023). ArticleCASPubMedPubMed Central Google Scholar
Curovic, V. R. et al. Optimization of albuminuria-lowering treatment in diabetes by crossover rotation to four different drug classes: a randomized crossover trial. Diabetes Care46, 593–601 (2023). ArticleCASPubMedPubMed Central Google Scholar
A research study to see how semaglutide works compared to placebo in people with type 2 diabetes and chronic kidney disease (FLOW). ClinicalTrials.govhttps://clinicaltrials.gov/study/NCT03819153 (2024).
Heerspink, H. J. L. et al. Design of FLAIR: a phase 2b study of the 5-lipoxygenase activating protein inhibitor AZD5718 in patients with proteinuric CKD. Kidney Int. Rep.6, 2803–2810 (2021). ArticlePubMedPubMed Central Google Scholar
Frimodt-Moller, M., Persson, F. & Rossing, P. Mitigating risk of aldosterone in diabetic kidney disease. Curr. Opin. Nephrol. Hypertens.29, 145–151 (2020). ArticleCASPubMed Google Scholar
Stasch, J. P., Schlossmann, J. & Hocher, B. Renal effects of soluble guanylate cyclase stimulators and activators: a review of the preclinical evidence. Curr. Opin. Pharmacol.21, 95–104 (2015). ArticleCASPubMed Google Scholar
Fantus, D., Rogers, N. M., Grahammer, F., Huber, T. B. & Thomson, A. W. Roles of mTOR complexes in the kidney: implications for renal disease and transplantation. Nat. Rev. Nephrol.12, 587–609 (2016). ArticleCASPubMedPubMed Central Google Scholar
Heerspink, H. J. L. et al. Effects of tirzepatide versus insulin glargine on kidney outcomes in type 2 diabetes in the SURPASS-4 trial: post-hoc analysis of an open-label, randomised, phase 3 trial. Lancet Diabetes Endocrinol.10, 774–785 (2022). ArticleCASPubMed Google Scholar
Hammoud, R. & Drucker, D. J. Beyond the pancreas: contrasting cardiometabolic actions of GIP and GLP1. Nat. Rev. Endocrinol.19, 201–216 (2023). ArticleCASPubMed Google Scholar
A study of tirzepatide (LY3298176) in participants with overweight or obesity and chronic kidney disease with or without type 2 diabetes (TREASURE-CKD). ClinicalTrials.govhttps://clinicaltrials.gov/study/NCT05536804 (2024).
Ruiz-Andres, O. et al. Downregulation of kidney protective factors by inflammation: role of transcription factors and epigenetic mechanisms. Am. J. Physiol. Renal Physiol.311, F1329–F1340 (2016). ArticlePubMed Google Scholar
Mora-Fernandez, C. et al. Sodium-glucose co-transporter-2 inhibitors increase Klotho in patients with diabetic kidney disease: a clinical and experimental study. Biomed. Pharmacother.154, 113677 (2022). ArticleCASPubMed Google Scholar