Interaction of the transforming acidic coiled-coil 1 (TACC1) protein with ch-TOG and GAS41/NuBI1 suggests multiple TACC1-containing protein complexes in human cells (original) (raw)

Abstract

Dysregulation of the human transforming acidic coiled-coil (TACC) proteins is thought to be important in the evolution of breast cancer and multiple myeloma. However, the exact role of these proteins in the oncogenic process is currently unknown. Using the full-length TACC1 protein as bait to screen a human mammary epithelial cDNA library, we have identified two genes that are also amplified and overexpressed in tumours derived from different cellular origins. TACC1 interacts with the C-terminus of both the microtubule-associated colonic and hepatic tumour overexpressed (ch-TOG) protein, and the oncogenic transcription factor glioma amplified sequence 41/NuMA binding protein 1 (GAS41/NuBI1; where NuMA stands for nuclear mitotic apparatus protein 1). This suggests that the TACC proteins can form multiple complexes, dysregulation of which may be an important step during tumorigenesis.

Full Text

The Full Text of this article is available as a PDF (236.7 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Cairns B. R., Henry N. L., Kornberg R. D. TFG/TAF30/ANC1, a component of the yeast SWI/SNF complex that is similar to the leukemogenic proteins ENL and AF-9. Mol Cell Biol. 1996 Jul;16(7):3308–3316. doi: 10.1128/mcb.16.7.3308. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Charrasse S., Mazel M., Taviaux S., Berta P., Chow T., Larroque C. Characterization of the cDNA and pattern of expression of a new gene over-expressed in human hepatomas and colonic tumors. Eur J Biochem. 1995 Dec 1;234(2):406–413. doi: 10.1111/j.1432-1033.1995.406_b.x. [DOI] [PubMed] [Google Scholar]
  3. Chen H. M., Schmeichel K. L., Mian I. S., Lelièvre S., Petersen O. W., Bissell M. J. AZU-1: a candidate breast tumor suppressor and biomarker for tumor progression. Mol Biol Cell. 2000 Apr;11(4):1357–1367. doi: 10.1091/mbc.11.4.1357. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Cullen C. F., Ohkura H. Msps protein is localized to acentrosomal poles to ensure bipolarity of Drosophila meiotic spindles. Nat Cell Biol. 2001 Jul;3(7):637–642. doi: 10.1038/35083025. [DOI] [PubMed] [Google Scholar]
  5. Fischer U., Heckel D., Michel A., Janka M., Hulsebos T., Meese E. Cloning of a novel transcription factor-like gene amplified in human glioma including astrocytoma grade I. Hum Mol Genet. 1997 Oct;6(11):1817–1822. doi: 10.1093/hmg/6.11.1817. [DOI] [PubMed] [Google Scholar]
  6. Gergely F., Karlsson C., Still I., Cowell J., Kilmartin J., Raff J. W. The TACC domain identifies a family of centrosomal proteins that can interact with microtubules. Proc Natl Acad Sci U S A. 2000 Dec 19;97(26):14352–14357. doi: 10.1073/pnas.97.26.14352. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Gergely F., Kidd D., Jeffers K., Wakefield J. G., Raff J. W. D-TACC: a novel centrosomal protein required for normal spindle function in the early Drosophila embryo. EMBO J. 2000 Jan 17;19(2):241–252. doi: 10.1093/emboj/19.2.241. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Harborth J., Weber K., Osborn M. GAS41, a highly conserved protein in eukaryotic nuclei, binds to NuMA. J Biol Chem. 2000 Oct 13;275(41):31979–31985. doi: 10.1074/jbc.M000994200. [DOI] [PubMed] [Google Scholar]
  9. Lee M. J., Gergely F., Jeffers K., Peak-Chew S. Y., Raff J. W. Msps/XMAP215 interacts with the centrosomal protein D-TACC to regulate microtubule behaviour. Nat Cell Biol. 2001 Jul;3(7):643–649. doi: 10.1038/35083033. [DOI] [PubMed] [Google Scholar]
  10. Munnia A., Schütz N., Romeike B. F., Maldener E., Glass B., Maas R., Nastainczyk W., Feiden W., Fischer U., Meese E. Expression, cellular distribution and protein binding of the glioma amplified sequence (GAS41), a highly conserved putative transcription factor. Oncogene. 2001 Aug 9;20(35):4853–4863. doi: 10.1038/sj.onc.1204650. [DOI] [PubMed] [Google Scholar]
  11. Pu J. J., Li C., Rodriguez M., Banerjee D. Cloning and structural characterization of ECTACC, a new member of the transforming acidic coiled coil (TACC) gene family: cDNA sequence and expression analysis in human microvascular endothelial cells. Cytokine. 2001 Feb 7;13(3):129–137. doi: 10.1006/cyto.2000.0812. [DOI] [PubMed] [Google Scholar]
  12. Sadek C. M., Jalaguier S., Feeney E. P., Aitola M., Damdimopoulos A. E., Pelto-Huikko M., Gustafsson J. A. Isolation and characterization of AINT: a novel ARNT interacting protein expressed during murine embryonic development. Mech Dev. 2000 Oct;97(1-2):13–26. doi: 10.1016/s0925-4773(00)00415-9. [DOI] [PubMed] [Google Scholar]
  13. Saredi A., Howard L., Compton D. A. NuMA assembles into an extensive filamentous structure when expressed in the cell cytoplasm. J Cell Sci. 1996 Mar;109(Pt 3):619–630. doi: 10.1242/jcs.109.3.619. [DOI] [PubMed] [Google Scholar]
  14. Spittle C., Charrasse S., Larroque C., Cassimeris L. The interaction of TOGp with microtubules and tubulin. J Biol Chem. 2000 Jul 7;275(27):20748–20753. doi: 10.1074/jbc.M002597200. [DOI] [PubMed] [Google Scholar]
  15. Stebbins-Boaz B., Cao Q., de Moor C. H., Mendez R., Richter J. D. Maskin is a CPEB-associated factor that transiently interacts with elF-4E. Mol Cell. 1999 Dec;4(6):1017–1027. doi: 10.1016/s1097-2765(00)80230-0. [DOI] [PubMed] [Google Scholar]
  16. Still I. H., Hamilton M., Vince P., Wolfman A., Cowell J. K. Cloning of TACC1, an embryonically expressed, potentially transforming coiled coil containing gene, from the 8p11 breast cancer amplicon. Oncogene. 1999 Jul 8;18(27):4032–4038. doi: 10.1038/sj.onc.1202801. [DOI] [PubMed] [Google Scholar]
  17. Still I. H., Vince P., Cowell J. K. The third member of the transforming acidic coiled coil-containing gene family, TACC3, maps in 4p16, close to translocation breakpoints in multiple myeloma, and is upregulated in various cancer cell lines. Genomics. 1999 Jun 1;58(2):165–170. doi: 10.1006/geno.1999.5829. [DOI] [PubMed] [Google Scholar]
  18. Ugolini F., Adélaïde J., Charafe-Jauffret E., Nguyen C., Jacquemier J., Jordan B., Birnbaum D., Pébusque M. J. Differential expression assay of chromosome arm 8p genes identifies Frizzled-related (FRP1/FRZB) and Fibroblast Growth Factor Receptor 1 (FGFR1) as candidate breast cancer genes. Oncogene. 1999 Mar 11;18(10):1903–1910. doi: 10.1038/sj.onc.1202739. [DOI] [PubMed] [Google Scholar]
  19. Welch M. D., Drubin D. G. A nuclear protein with sequence similarity to proteins implicated in human acute leukemias is important for cellular morphogenesis and actin cytoskeletal function in Saccharomyces cerevisiae. Mol Biol Cell. 1994 Jun;5(6):617–632. doi: 10.1091/mbc.5.6.617. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Zuber J., Tchernitsa O. I., Hinzmann B., Schmitz A. C., Grips M., Hellriegel M., Sers C., Rosenthal A., Schäfer R. A genome-wide survey of RAS transformation targets. Nat Genet. 2000 Feb;24(2):144–152. doi: 10.1038/72799. [DOI] [PubMed] [Google Scholar]