Roles for WHITE COLLAR-1 in circadian and general photoperception in Neurospora crassa (original) (raw)
Abstract
The transcription factors WHITE COLLAR-1 (WC-1) and WHITE COLLAR-2 (WC-2) interact to form a heterodimeric complex (WCC) that is essential for most of the light-mediated processes in Neurospora crassa. WCC also plays a distinct non-light-related role as the transcriptional activator in the FREQUENCY (FRQ)/WCC feedback loop that is central to the N. crassa circadian system. Although an activator role was expected for WC-1, unanticipated phenotypes resulting from some wc-1 alleles prompted a closer examination of an allelic series for WC-1 that has uncovered roles for this central regulator in constant darkness and in response to light. We analyzed the phenotypes of five different wc-1 mutants for expression of FRQ and WC-1 in constant darkness and following light induction. While confirming the absolute requirement of WC-1 for light responses, the data suggest multiple levels of control for light-regulated genes.
Full Text
The Full Text of this article is available as a PDF (484.8 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Aronson B. D., Johnson K. A., Dunlap J. C. Circadian clock locus frequency: protein encoded by a single open reading frame defines period length and temperature compensation. Proc Natl Acad Sci U S A. 1994 Aug 2;91(16):7683–7687. doi: 10.1073/pnas.91.16.7683. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Ballario P., Talora C., Galli D., Linden H., Macino G. Roles in dimerization and blue light photoresponse of the PAS and LOV domains of Neurospora crassa white collar proteins. Mol Microbiol. 1998 Aug;29(3):719–729. doi: 10.1046/j.1365-2958.1998.00955.x. [DOI] [PubMed] [Google Scholar]
- Ballario P., Vittorioso P., Magrelli A., Talora C., Cabibbo A., Macino G. White collar-1, a central regulator of blue light responses in Neurospora, is a zinc finger protein. EMBO J. 1996 Apr 1;15(7):1650–1657. [PMC free article] [PubMed] [Google Scholar]
- Berson David M., Dunn Felice A., Takao Motoharu. Phototransduction by retinal ganglion cells that set the circadian clock. Science. 2002 Feb 8;295(5557):1070–1073. doi: 10.1126/science.1067262. [DOI] [PubMed] [Google Scholar]
- Cheng P., Yang Y., Liu Y. Interlocked feedback loops contribute to the robustness of the Neurospora circadian clock. Proc Natl Acad Sci U S A. 2001 Jun 19;98(13):7408–7413. doi: 10.1073/pnas.121170298. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Collett Michael A., Garceau Norm, Dunlap Jay C., Loros Jennifer J. Light and clock expression of the Neurospora clock gene frequency is differentially driven by but dependent on WHITE COLLAR-2. Genetics. 2002 Jan;160(1):149–158. doi: 10.1093/genetics/160.1.149. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Crosthwaite S. K., Dunlap J. C., Loros J. J. Neurospora wc-1 and wc-2: transcription, photoresponses, and the origins of circadian rhythmicity. Science. 1997 May 2;276(5313):763–769. doi: 10.1126/science.276.5313.763. [DOI] [PubMed] [Google Scholar]
- Crosthwaite S. K., Loros J. J., Dunlap J. C. Light-induced resetting of a circadian clock is mediated by a rapid increase in frequency transcript. Cell. 1995 Jun 30;81(7):1003–1012. doi: 10.1016/s0092-8674(05)80005-4. [DOI] [PubMed] [Google Scholar]
- Degli-Innocenti F., Russo V. E. Isolation of new white collar mutants of Neurospora crassa and studies on their behavior in the blue light-induced formation of protoperithecia. J Bacteriol. 1984 Aug;159(2):757–761. doi: 10.1128/jb.159.2.757-761.1984. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Denault D. L., Loros J. J., Dunlap J. C. WC-2 mediates WC-1-FRQ interaction within the PAS protein-linked circadian feedback loop of Neurospora. EMBO J. 2001 Jan 15;20(1-2):109–117. doi: 10.1093/emboj/20.1.109. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Devlin P. F., Kay S. A. Circadian photoperception. Annu Rev Physiol. 2001;63:677–694. doi: 10.1146/annurev.physiol.63.1.677. [DOI] [PubMed] [Google Scholar]
- Dragovic Zdravko, Tan Ying, Görl Margit, Roenneberg Till, Merrow Martha. Light reception and circadian behavior in 'blind' and 'clock-less' mutants of Neurospora crassa. EMBO J. 2002 Jul 15;21(14):3643–3651. doi: 10.1093/emboj/cdf377. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Dunlap J. C. Molecular bases for circadian clocks. Cell. 1999 Jan 22;96(2):271–290. doi: 10.1016/s0092-8674(00)80566-8. [DOI] [PubMed] [Google Scholar]
- Emery P., Stanewsky R., Hall J. C., Rosbash M. A unique circadian-rhythm photoreceptor. Nature. 2000 Mar 30;404(6777):456–457. doi: 10.1038/35006558. [DOI] [PubMed] [Google Scholar]
- Froehlich Allan C., Liu Yi, Loros Jennifer J., Dunlap Jay C. White Collar-1, a circadian blue light photoreceptor, binding to the frequency promoter. Science. 2002 Jul 4;297(5582):815–819. doi: 10.1126/science.1073681. [DOI] [PubMed] [Google Scholar]
- Garceau N. Y., Liu Y., Loros J. J., Dunlap J. C. Alternative initiation of translation and time-specific phosphorylation yield multiple forms of the essential clock protein FREQUENCY. Cell. 1997 May 2;89(3):469–476. doi: 10.1016/s0092-8674(00)80227-5. [DOI] [PubMed] [Google Scholar]
- Hall J. C. Cryptochromes: sensory reception, transduction, and clock functions subserving circadian systems. Curr Opin Neurobiol. 2000 Aug;10(4):456–466. doi: 10.1016/s0959-4388(00)00117-3. [DOI] [PubMed] [Google Scholar]
- Hattar S., Liao H. W., Takao M., Berson D. M., Yau K. W. Melanopsin-containing retinal ganglion cells: architecture, projections, and intrinsic photosensitivity. Science. 2002 Feb 8;295(5557):1065–1070. doi: 10.1126/science.1069609. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Heintzen C., Loros J. J., Dunlap J. C. The PAS protein VIVID defines a clock-associated feedback loop that represses light input, modulates gating, and regulates clock resetting. Cell. 2001 Feb 9;104(3):453–464. doi: 10.1016/s0092-8674(01)00232-x. [DOI] [PubMed] [Google Scholar]
- Helfrich-Förster C., Winter C., Hofbauer A., Hall J. C., Stanewsky R. The circadian clock of fruit flies is blind after elimination of all known photoreceptors. Neuron. 2001 Apr;30(1):249–261. doi: 10.1016/s0896-6273(01)00277-x. [DOI] [PubMed] [Google Scholar]
- Horton R. M., Hunt H. D., Ho S. N., Pullen J. K., Pease L. R. Engineering hybrid genes without the use of restriction enzymes: gene splicing by overlap extension. Gene. 1989 Apr 15;77(1):61–68. doi: 10.1016/0378-1119(89)90359-4. [DOI] [PubMed] [Google Scholar]
- Johnson C. H., Golden S. S. Circadian programs in cyanobacteria: adaptiveness and mechanism. Annu Rev Microbiol. 1999;53:389–409. doi: 10.1146/annurev.micro.53.1.389. [DOI] [PubMed] [Google Scholar]
- Lee K., Loros J. J., Dunlap J. C. Interconnected feedback loops in the Neurospora circadian system. Science. 2000 Jul 7;289(5476):107–110. doi: 10.1126/science.289.5476.107. [DOI] [PubMed] [Google Scholar]
- Linden H., Macino G. White collar 2, a partner in blue-light signal transduction, controlling expression of light-regulated genes in Neurospora crassa. EMBO J. 1997 Jan 2;16(1):98–109. doi: 10.1093/emboj/16.1.98. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Linden H., Rodriguez-Franco M., Macino G. Mutants of Neurospora crassa defective in regulation of blue light perception. Mol Gen Genet. 1997 Mar 26;254(2):111–118. doi: 10.1007/s004380050398. [DOI] [PubMed] [Google Scholar]
- Liu Y., Merrow M., Loros J. J., Dunlap J. C. How temperature changes reset a circadian oscillator. Science. 1998 Aug 7;281(5378):825–829. doi: 10.1126/science.281.5378.825. [DOI] [PubMed] [Google Scholar]
- Loros J. J., Dunlap J. C. Genetic and molecular analysis of circadian rhythms in Neurospora. Annu Rev Physiol. 2001;63:757–794. doi: 10.1146/annurev.physiol.63.1.757. [DOI] [PubMed] [Google Scholar]
- Loros J. J., Feldman J. F. Loss of temperature compensation of circadian period length in the frq-9 mutant of Neurospora crassa. J Biol Rhythms. 1986 Fall;1(3):187–198. doi: 10.1177/074873048600100302. [DOI] [PubMed] [Google Scholar]
- Merrow M., Franchi L., Dragovic Z., Görl M., Johnson J., Brunner M., Macino G., Roenneberg T. Circadian regulation of the light input pathway in Neurospora crassa. EMBO J. 2001 Feb 1;20(3):307–315. doi: 10.1093/emboj/20.3.307. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Okamura H., Miyake S., Sumi Y., Yamaguchi S., Yasui A., Muijtjens M., Hoeijmakers J. H., van der Horst G. T. Photic induction of mPer1 and mPer2 in cry-deficient mice lacking a biological clock. Science. 1999 Dec 24;286(5449):2531–2534. doi: 10.1126/science.286.5449.2531. [DOI] [PubMed] [Google Scholar]
- Paietta J., Sargent M. L. Modification of Blue Light Photoresponses by Riboflavin Analogs in Neurospora crassa. Plant Physiol. 1983 Jul;72(3):764–766. doi: 10.1104/pp.72.3.764. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Paietta J., Sargent M. L. Photoreception in Neurospora crassa: correlation of reduced light sensitivity with flavin deficiency. Proc Natl Acad Sci U S A. 1981 Sep;78(9):5573–5577. doi: 10.1073/pnas.78.9.5573. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Quail P. H., Boylan M. T., Parks B. M., Short T. W., Xu Y., Wagner D. Phytochromes: photosensory perception and signal transduction. Science. 1995 May 5;268(5211):675–680. doi: 10.1126/science.7732376. [DOI] [PubMed] [Google Scholar]
- Reppert S. M., Weaver D. R. Molecular analysis of mammalian circadian rhythms. Annu Rev Physiol. 2001;63:647–676. doi: 10.1146/annurev.physiol.63.1.647. [DOI] [PubMed] [Google Scholar]
- Schmitz O., Katayama M., Williams S. B., Kondo T., Golden S. S. CikA, a bacteriophytochrome that resets the cyanobacterial circadian clock. Science. 2000 Aug 4;289(5480):765–768. doi: 10.1126/science.289.5480.765. [DOI] [PubMed] [Google Scholar]
- Schmitz O., Katayama M., Williams S. B., Kondo T., Golden S. S. CikA, a bacteriophytochrome that resets the cyanobacterial circadian clock. Science. 2000 Aug 4;289(5480):765–768. doi: 10.1126/science.289.5480.765. [DOI] [PubMed] [Google Scholar]
- Schwerdtfeger C., Linden H. Blue light adaptation and desensitization of light signal transduction in Neurospora crassa. Mol Microbiol. 2001 Feb;39(4):1080–1087. doi: 10.1046/j.1365-2958.2001.02306.x. [DOI] [PubMed] [Google Scholar]
- Schwerdtfeger C., Linden H. Localization and light-dependent phosphorylation of white collar 1 and 2, the two central components of blue light signaling in Neurospora crassa. Eur J Biochem. 2000 Jan;267(2):414–422. doi: 10.1046/j.1432-1327.2000.01016.x. [DOI] [PubMed] [Google Scholar]
- Selby C. P., Thompson C., Schmitz T. M., Van Gelder R. N., Sancar A. Functional redundancy of cryptochromes and classical photoreceptors for nonvisual ocular photoreception in mice. Proc Natl Acad Sci U S A. 2000 Dec 19;97(26):14697–14702. doi: 10.1073/pnas.260498597. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Shigeyoshi Y., Taguchi K., Yamamoto S., Takekida S., Yan L., Tei H., Moriya T., Shibata S., Loros J. J., Dunlap J. C. Light-induced resetting of a mammalian circadian clock is associated with rapid induction of the mPer1 transcript. Cell. 1997 Dec 26;91(7):1043–1053. doi: 10.1016/s0092-8674(00)80494-8. [DOI] [PubMed] [Google Scholar]
- Somers D. E., Devlin P. F., Kay S. A. Phytochromes and cryptochromes in the entrainment of the Arabidopsis circadian clock. Science. 1998 Nov 20;282(5393):1488–1490. doi: 10.1126/science.282.5393.1488. [DOI] [PubMed] [Google Scholar]
- Stanewsky R., Kaneko M., Emery P., Beretta B., Wager-Smith K., Kay S. A., Rosbash M., Hall J. C. The cryb mutation identifies cryptochrome as a circadian photoreceptor in Drosophila. Cell. 1998 Nov 25;95(5):681–692. doi: 10.1016/s0092-8674(00)81638-4. [DOI] [PubMed] [Google Scholar]
- Stokkan K. A., Yamazaki S., Tei H., Sakaki Y., Menaker M. Entrainment of the circadian clock in the liver by feeding. Science. 2001 Jan 19;291(5503):490–493. doi: 10.1126/science.291.5503.490. [DOI] [PubMed] [Google Scholar]
- Suri V., Qian Z., Hall J. C., Rosbash M. Evidence that the TIM light response is relevant to light-induced phase shifts in Drosophila melanogaster. Neuron. 1998 Jul;21(1):225–234. doi: 10.1016/s0896-6273(00)80529-2. [DOI] [PubMed] [Google Scholar]
- Talora C., Franchi L., Linden H., Ballario P., Macino G. Role of a white collar-1-white collar-2 complex in blue-light signal transduction. EMBO J. 1999 Sep 15;18(18):4961–4968. doi: 10.1093/emboj/18.18.4961. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Toyota Katuya, Onai Kiyoshi, Nakashima Hideaki. A new wc-1 mutant of Neurospora crassa shows unique light sensitivity in the circadian conidiation rhythm. Mol Genet Genomics. 2002 Jul 13;268(1):56–61. doi: 10.1007/s00438-002-0722-1. [DOI] [PubMed] [Google Scholar]
- Williams J. A., Sehgal A. Molecular components of the circadian system in Drosophila. Annu Rev Physiol. 2001;63:729–755. doi: 10.1146/annurev.physiol.63.1.729. [DOI] [PubMed] [Google Scholar]
- Yang Z., Emerson M., Su H. S., Sehgal A. Response of the timeless protein to light correlates with behavioral entrainment and suggests a nonvisual pathway for circadian photoreception. Neuron. 1998 Jul;21(1):215–223. doi: 10.1016/s0896-6273(00)80528-0. [DOI] [PubMed] [Google Scholar]
- Young M. W. Life's 24-hour clock: molecular control of circadian rhythms in animal cells. Trends Biochem Sci. 2000 Dec;25(12):601–606. doi: 10.1016/s0968-0004(00)01695-9. [DOI] [PubMed] [Google Scholar]
- van der Horst G. T., Muijtjens M., Kobayashi K., Takano R., Kanno S., Takao M., de Wit J., Verkerk A., Eker A. P., van Leenen D. Mammalian Cry1 and Cry2 are essential for maintenance of circadian rhythms. Nature. 1999 Apr 15;398(6728):627–630. doi: 10.1038/19323. [DOI] [PubMed] [Google Scholar]
- van der Horst G. T., Muijtjens M., Kobayashi K., Takano R., Kanno S., Takao M., de Wit J., Verkerk A., Eker A. P., van Leenen D. Mammalian Cry1 and Cry2 are essential for maintenance of circadian rhythms. Nature. 1999 Apr 15;398(6728):627–630. doi: 10.1038/19323. [DOI] [PubMed] [Google Scholar]