Arrangement of the central pseudoknot region of 16S rRNA in the 30S ribosomal subunit determined by site-directed 4-thiouridine crosslinking (original) (raw)

Abstract

The 16S rRNA central pseudoknot region in the 30S ribosomal subunit has been investigated by photocrosslinking from 4-thiouridine (s4U) located in the first 20 nt of the 16S rRNA. RNA fragments (nt 1-20) were made by in vitro transcription to incorporate s4U at every uridine position or were made by chemical synthesis to incorporate s4U into one of the uridine positions at +5, +14, +17, or +20. These were ligated to RNA containing nt 21-1542 of the 16S rRNA sequence and, after gel purification, the ligated RNA was reconstituted into 30S subunits. Long-range intramolecular crosslinks were produced by near-UV irradiation; these were separated by gel electrophoresis and analyzed by reverse transcription reactions. A number of crosslinks are made in each of the constructs, which must reflect the structural flexibility or conformational heterogeneity in this part of the 30S subunit. All of the constructs show crosslinking to the 559-562, 570-571, and 1080-1082 regions; however, other sites are crosslinked specifically from each s4U position. The most distinctive crosslinking sites are: 341-343 and 911-917 for s4U(+5); 903-904 (very strong), 1390-1397, and 1492 for s4U(+14); and 903-904 (moderate) for s4U(+17); in the 1070-1170 region in which there are different patterns for each s4U position. These results indicate that part of the central pseudoknot is in close contact with the decoding region, with helix 27 in the 885-912 interval and with part of domain III RNA. Crosslinking between s4U(+14) and 1395-1397 is consistent with base pairing at U14-A1398.

Full Text

The Full Text of this article is available as a PDF (2.8 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Agrawal R. K., Penczek P., Grassucci R. A., Burkhardt N., Nierhaus K. H., Frank J. Effect of buffer conditions on the position of tRNA on the 70 S ribosome as visualized by cryoelectron microscopy. J Biol Chem. 1999 Mar 26;274(13):8723–8729. doi: 10.1074/jbc.274.13.8723. [DOI] [PubMed] [Google Scholar]
  2. Agrawal R. K., Spahn C. M., Penczek P., Grassucci R. A., Nierhaus K. H., Frank J. Visualization of tRNA movements on the Escherichia coli 70S ribosome during the elongation cycle. J Cell Biol. 2000 Aug 7;150(3):447–460. doi: 10.1083/jcb.150.3.447. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Brink M. F., Verbeet M. P., de Boer H. A. Formation of the central pseudoknot in 16S rRNA is essential for initiation of translation. EMBO J. 1993 Oct;12(10):3987–3996. doi: 10.1002/j.1460-2075.1993.tb06076.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Cate J. H., Yusupov M. M., Yusupova G. Z., Earnest T. N., Noller H. F. X-ray crystal structures of 70S ribosome functional complexes. Science. 1999 Sep 24;285(5436):2095–2104. doi: 10.1126/science.285.5436.2095. [DOI] [PubMed] [Google Scholar]
  5. Clemons W. M., Jr, May J. L., Wimberly B. T., McCutcheon J. P., Capel M. S., Ramakrishnan V. Structure of a bacterial 30S ribosomal subunit at 5.5 A resolution. Nature. 1999 Aug 26;400(6747):833–840. doi: 10.1038/23631. [DOI] [PubMed] [Google Scholar]
  6. Culver G. M., Heilek G. M., Noller H. F. Probing the rRNA environment of ribosomal protein S5 across the subunit interface and inside the 30 S subunit using tethered Fe(II). J Mol Biol. 1999 Feb 19;286(2):355–364. doi: 10.1006/jmbi.1998.2483. [DOI] [PubMed] [Google Scholar]
  7. Cunningham P. R., Richard R. B., Weitzmann C. J., Nurse K., Ofengand J. The absence of modified nucleotides affects both in vitro assembly and in vitro function of the 30S ribosomal subunit of Escherichia coli. Biochimie. 1991 Jun;73(6):789–796. doi: 10.1016/0300-9084(91)90058-9. [DOI] [PubMed] [Google Scholar]
  8. Demeshkina N., Repkova M., Ven'yaminova A., Graifer D., Karpova G. Nucleotides of 18S rRNA surrounding mRNA codons at the human ribosomal A, P, and E sites: a crosslinking study with mRNA analogs carrying an aryl azide group at either the uracil or the guanine residue. RNA. 2000 Dec;6(12):1727–1736. doi: 10.1017/s1355838200000996. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Denman R., Nègre D., Cunningham P. R., Nurse K., Colgan J., Weitzmann C., Ofengand J. Effect of point mutations in the decoding site (C1400) region of 16S ribosomal RNA on the ability of ribosomes to carry out individual steps of protein synthesis. Biochemistry. 1989 Feb 7;28(3):1012–1019. doi: 10.1021/bi00429a014. [DOI] [PubMed] [Google Scholar]
  10. Dubreuil Y. L., Expert-Bezançon A., Favre A. Conformation and structural fluctuations of a 218 nucleotides long rRNA fragment: 4-thiouridine as an intrinsic photolabelling probe. Nucleic Acids Res. 1991 Jul 11;19(13):3653–3660. doi: 10.1093/nar/19.13.3653. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. England T. E., Uhlenbeck O. C. 3'-terminal labelling of RNA with T4 RNA ligase. Nature. 1978 Oct 12;275(5680):560–561. doi: 10.1038/275560a0. [DOI] [PubMed] [Google Scholar]
  12. Ericson G., Chevli K., Wollenzien P. Structure of synthetic unmethylated 16S ribosomal RNA as purified RNA and in reconstituted 30S ribosomal subunits. Biochemistry. 1989 Jul 25;28(15):6446–6454. doi: 10.1021/bi00441a043. [DOI] [PubMed] [Google Scholar]
  13. Ericson G., Minchew P., Wollenzien P. Structural changes in base-paired region 28 in 16 S rRNA close to the decoding region of the 30 S ribosomal subunit are correlated to changes in tRNA binding. J Mol Biol. 1995 Jul 21;250(4):407–419. doi: 10.1006/jmbi.1995.0386. [DOI] [PubMed] [Google Scholar]
  14. Gutell R. R. Collection of small subunit (16S- and 16S-like) ribosomal RNA structures: 1994. Nucleic Acids Res. 1994 Sep;22(17):3502–3507. doi: 10.1093/nar/22.17.3502. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Hoppe E., Hao N. T. Histo-pathologische Aspekte, Nomenklatur und Häufigkeit von Blasenmolen und Chorionepitheliomen. Zentralbl Gynakol. 1970 Nov 14;92(46):1534–1541. [PubMed] [Google Scholar]
  16. Juzumiene D. I., Wollenzien P. Organization of the 16S rRNA around its 5' terminus determined by photochemical crosslinking in the 30S ribosomal subunit. RNA. 2000 Jan;6(1):26–40. doi: 10.1017/s1355838200991659. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Krzyzosiak W., Denman R., Nurse K., Hellmann W., Boublik M., Gehrke C. W., Agris P. F., Ofengand J. In vitro synthesis of 16S ribosomal RNA containing single base changes and assembly into a functional 30S ribosome. Biochemistry. 1987 Apr 21;26(8):2353–2364. doi: 10.1021/bi00382a042. [DOI] [PubMed] [Google Scholar]
  18. Kössel H., Hoch B., Zeltz P. Alternative base pairing between 5'- and 3'-terminal sequences of small subunit RNA may provide the basis of a conformational switch of the small ribosomal subunit. Nucleic Acids Res. 1990 Jul 25;18(14):4083–4088. doi: 10.1093/nar/18.14.4083. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Lancaster L., Culver G. M., Yusupova G. Z., Cate J. H., Yusupov M. M., Noller H. F. The location of protein S8 and surrounding elements of 16S rRNA in the 70S ribosome from combined use of directed hydroxyl radical probing and X-ray crystallography. RNA. 2000 May;6(5):717–729. doi: 10.1017/s1355838200000303. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Leclerc D., Brakier-Gingras L. A conformational switch involving the 915 region of Escherichia coli 16 S ribosomal RNA. FEBS Lett. 1991 Feb 25;279(2):171–174. doi: 10.1016/0014-5793(91)80141-o. [DOI] [PubMed] [Google Scholar]
  21. Leclerc D., Melançon P., Brakier-Gingras L. Mutations in the 915 region of Escherichia coli 16S ribosomal RNA reduce the binding of streptomycin to the ribosome. Nucleic Acids Res. 1991 Jul 25;19(14):3973–3977. doi: 10.1093/nar/19.14.3973. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Moazed D., Noller H. F. Binding of tRNA to the ribosomal A and P sites protects two distinct sets of nucleotides in 16 S rRNA. J Mol Biol. 1990 Jan 5;211(1):135–145. doi: 10.1016/0022-2836(90)90016-F. [DOI] [PubMed] [Google Scholar]
  23. Moazed D., Noller H. F. Transfer RNA shields specific nucleotides in 16S ribosomal RNA from attack by chemical probes. Cell. 1986 Dec 26;47(6):985–994. doi: 10.1016/0092-8674(86)90813-5. [DOI] [PubMed] [Google Scholar]
  24. Moine H., Nurse K., Ehresmann B., Ehresmann C., Ofengand J. Conformational analysis of Escherichia coli 30S ribosomes containing the single-base mutations G530U, U1498G, G1401C, and C1501G and the double-base mutation G1401C/C1501G. Biochemistry. 1997 Nov 4;36(44):13700–13709. doi: 10.1021/bi971127c. [DOI] [PubMed] [Google Scholar]
  25. Montpetit A., Payant C., Nolan J. M., Brakier-Gingras L. Analysis of the conformation of the 3' major domain of Escherichia coli16S ribosomal RNA using site-directed photoaffinity crosslinking. RNA. 1998 Nov;4(11):1455–1466. doi: 10.1017/s1355838298981079. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Moore M. J., Sharp P. A. Site-specific modification of pre-mRNA: the 2'-hydroxyl groups at the splice sites. Science. 1992 May 15;256(5059):992–997. doi: 10.1126/science.1589782. [DOI] [PubMed] [Google Scholar]
  27. Murray N. E., Bruce S. A., Murray K. Molecular cloning of the DNA ligase gene from bacteriophage T4. II. Amplification and preparation of the gene product. J Mol Biol. 1979 Aug 15;132(3):493–505. doi: 10.1016/0022-2836(79)90271-7. [DOI] [PubMed] [Google Scholar]
  28. Newcomb L. F., Noller H. F. Directed hydroxyl radical probing of 16S ribosomal RNA in 70S ribosomes from internal positions of the RNA. Biochemistry. 1999 Jan 19;38(3):945–951. doi: 10.1021/bi981644a. [DOI] [PubMed] [Google Scholar]
  29. Pinard R., Côté M., Payant C., Brakier-Gingras L. Positions 13 and 914 in Escherichia coli 16S ribosomal RNA are involved in the control of translational accuracy. Nucleic Acids Res. 1994 Feb 25;22(4):619–624. doi: 10.1093/nar/22.4.619. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Pinard R., Payant C., Brakier-Gingras L. Mutations at positions 13 and/or 914 in Escherichia coli 16S ribosomal RNA interfere with the initiation of protein synthesis. Biochemistry. 1995 Jul 25;34(29):9611–9616. doi: 10.1021/bi00029a038. [DOI] [PubMed] [Google Scholar]
  31. Pinard R., Payant C., Melançon P., Brakier-Gingras L. The 5' proximal helix of 16S rRNA is involved in the binding of streptomycin to the ribosome. FASEB J. 1993 Jan;7(1):173–176. doi: 10.1096/fasebj.7.1.7678560. [DOI] [PubMed] [Google Scholar]
  32. Pleij C. W., Rietveld K., Bosch L. A new principle of RNA folding based on pseudoknotting. Nucleic Acids Res. 1985 Mar 11;13(5):1717–1731. doi: 10.1093/nar/13.5.1717. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Poot R. A., Pleij C. W., van Duin J. The central pseudoknot in 16S ribosomal RNA is needed for ribosome stability but is not essential for 30S initiation complex formation. Nucleic Acids Res. 1996 Oct 1;24(19):3670–3676. doi: 10.1093/nar/24.19.3670. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Poot R. A., van den Worm S. H., Pleij C. W., van Duin J. Base complementarity in helix 2 of the central pseudoknot in 16S rRNA is essential for ribosome functioning. Nucleic Acids Res. 1998 Jan 15;26(2):549–553. doi: 10.1093/nar/26.2.549. [DOI] [PMC free article] [PubMed] [Google Scholar]
  35. Powers T., Noller H. F. Hydroxyl radical footprinting of ribosomal proteins on 16S rRNA. RNA. 1995 Apr;1(2):194–209. [PMC free article] [PubMed] [Google Scholar]
  36. Stark H., Rodnina M. V., Wieden H. J., van Heel M., Wintermeyer W. Large-scale movement of elongation factor G and extensive conformational change of the ribosome during translocation. Cell. 2000 Feb 4;100(3):301–309. doi: 10.1016/s0092-8674(00)80666-2. [DOI] [PubMed] [Google Scholar]
  37. Stern S., Powers T., Changchien L. M., Noller H. F. RNA-protein interactions in 30S ribosomal subunits: folding and function of 16S rRNA. Science. 1989 May 19;244(4906):783–790. doi: 10.1126/science.2658053. [DOI] [PubMed] [Google Scholar]
  38. Tait R. C., Rodriguez R. L., West R. W., Jr The rapid purification of T4 DNA ligase from a lambda T4 lig lysogen. J Biol Chem. 1980 Feb 10;255(3):813–815. [PubMed] [Google Scholar]
  39. Tocilj A., Schlünzen F., Janell D., Glühmann M., Hansen H. A., Harms J., Bashan A., Bartels H., Agmon I., Franceschi F. The small ribosomal subunit from Thermus thermophilus at 4.5 A resolution: pattern fittings and the identification of a functional site. Proc Natl Acad Sci U S A. 1999 Dec 7;96(25):14252–14257. doi: 10.1073/pnas.96.25.14252. [DOI] [PMC free article] [PubMed] [Google Scholar]
  40. VanLoock M. S., Easterwood T. R., Harvey S. C. Major groove binding of the tRNA/mRNA complex to the 16 S ribosomal RNA decoding site. J Mol Biol. 1999 Feb 5;285(5):2069–2078. doi: 10.1006/jmbi.1998.2442. [DOI] [PubMed] [Google Scholar]
  41. Wilms C., Wollenzien P. Purification of RNA from polyacrylamide gels by ultracentrifugation. Anal Biochem. 1994 Aug 15;221(1):204–205. doi: 10.1006/abio.1994.1399. [DOI] [PubMed] [Google Scholar]
  42. Wollenzien P. L. Isolation and identification of RNA cross-links. Methods Enzymol. 1988;164:319–329. doi: 10.1016/s0076-6879(88)64052-3. [DOI] [PubMed] [Google Scholar]
  43. Yoshizawa S., Fourmy D., Puglisi J. D. Recognition of the codon-anticodon helix by ribosomal RNA. Science. 1999 Sep 10;285(5434):1722–1725. doi: 10.1126/science.285.5434.1722. [DOI] [PubMed] [Google Scholar]