Pathways of internalization of the hCG/LH receptor: immunoelectron microscopic studies in Leydig cells and transfected L-cells (original) (raw)

Abstract

Monoclonal anti-receptor antibodies were used to study the cellular traffic of the hCG/LH receptor by immunoelectron microscopy. The LHR38 antibody was shown to bind to the extracellular domain of the receptor but not to interfere with hormone binding, adenylate cyclase activation or with the rate of internalization of the receptor. Pig Leydig cells and a permanent L-cell line expressing the LH receptor were used for the study. Incubation with LHR38-gold complexes showed the LH receptors to be randomly distributed over the cell surface including the clathrin coated pits. The LH receptors were internalized via a route including coated pits, coated vesicles and multivesicular bodies to lysosomes. This route is different from that observed for beta-adrenergic, muscarinic, and yeast mating factor receptors and considered previously as possibly general for G-protein-coupled receptors. The use of [125I]LHR38 allowed precise measurement of the rate of internalization, showing the existence of a constitutive pathway which was increased 11- fold by hormone administration. Double labeling experiments suggested that the hormone (hCG-Au15nm) and the receptor (labeled with LHR38- Au5nm) have similar routes of endocytosis, both of them being degraded in lysosomes. Studies of the reappearance of LHR38-Au5nm on the surface of the cells and the use of monensin indicated that only a very small proportion of the receptor molecules were recycled to the cell surface. The distribution and the intracellular pathways of LH receptors are very similar in Leydig cells and transfected L-cells. This opens the possibility of using the latter to study, by in vitro mutagenesis, the molecular mechanisms involved in the cellular traffic of LH receptors.

Full Text

The Full Text of this article is available as a PDF (4.3 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Anderson R. G., Brown M. S., Goldstein J. L. Role of the coated endocytic vesicle in the uptake of receptor-bound low density lipoprotein in human fibroblasts. Cell. 1977 Mar;10(3):351–364. doi: 10.1016/0092-8674(77)90022-8. [DOI] [PubMed] [Google Scholar]
  2. Anderson R. G., Goldstein J. L., Brown M. S. A mutation that impairs the ability of lipoprotein receptors to localise in coated pits on the cell surface of human fibroblasts. Nature. 1977 Dec 22;270(5639):695–699. doi: 10.1038/270695a0. [DOI] [PubMed] [Google Scholar]
  3. Ascoli M. Internalization and degradation of receptor-bound human choriogonadotropin in Leydig tumor cells. Fate of the hormone subunits. J Biol Chem. 1982 Nov 25;257(22):13306–13311. [PubMed] [Google Scholar]
  4. Ascoli M. Lysosomal accumulation of the hormone-receptor complex during receptor-mediated endocytosis of human choriogonadotropin. J Cell Biol. 1984 Oct;99(4 Pt 1):1242–1250. doi: 10.1083/jcb.99.4.1242. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Berg T., Blomhoff R., Naess L., Tolleshaug H., Drevon C. A. Monensin inhibits receptor-mediated endocytosis of asialoglycoproteins in rat hepatocytes. Exp Cell Res. 1983 Oct 15;148(2):319–330. doi: 10.1016/0014-4827(83)90156-8. [DOI] [PubMed] [Google Scholar]
  6. Davis C. G., Lehrman M. A., Russell D. W., Anderson R. G., Brown M. S., Goldstein J. L. The J.D. mutation in familial hypercholesterolemia: amino acid substitution in cytoplasmic domain impedes internalization of LDL receptors. Cell. 1986 Apr 11;45(1):15–24. doi: 10.1016/0092-8674(86)90533-7. [DOI] [PubMed] [Google Scholar]
  7. Dunn W. A., Hubbard A. L. Receptor-mediated endocytosis of epidermal growth factor by hepatocytes in the perfused rat liver: ligand and receptor dynamics. J Cell Biol. 1984 Jun;98(6):2148–2159. doi: 10.1083/jcb.98.6.2148. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Felder S., Miller K., Moehren G., Ullrich A., Schlessinger J., Hopkins C. R. Kinase activity controls the sorting of the epidermal growth factor receptor within the multivesicular body. Cell. 1990 May 18;61(4):623–634. doi: 10.1016/0092-8674(90)90474-s. [DOI] [PubMed] [Google Scholar]
  9. Frazier A. L., Robbins L. S., Stork P. J., Sprengel R., Segaloff D. L., Cone R. D. Isolation of TSH and LH/CG receptor cDNAs from human thyroid: regulation by tissue specific splicing. Mol Endocrinol. 1990 Aug;4(8):1264–1276. doi: 10.1210/mend-4-8-1264. [DOI] [PubMed] [Google Scholar]
  10. Genty N., Salesse R., Garnier J. Internalization and recycling of lutropin receptors upon stimulation by porcine lutropin and human choriogonadotropin in porcine Leydig cells. Biol Cell. 1987;59(2):129–135. doi: 10.1111/j.1768-322x.1987.tb00523.x. [DOI] [PubMed] [Google Scholar]
  11. Genty N., Salesse R., Jallal B., Garnier J. Endocytosis of the lutropin receptor is mediated by a low affinity binding site. Mol Cell Endocrinol. 1991 Apr;76(1-3):89–94. doi: 10.1016/0303-7207(91)90263-r. [DOI] [PubMed] [Google Scholar]
  12. Gladhaug I. P., Christoffersen T. Rapid constitutive internalization and externalization of epidermal growth factor receptors in isolated rat hepatocytes. Monensin inhibits receptor externalization and reduces the capacity for continued endocytosis of epidermal growth factor. J Biol Chem. 1988 Sep 5;263(25):12199–12203. [PubMed] [Google Scholar]
  13. Hansen S. H., Sandvig K., van Deurs B. Internalization efficiency of the transferrin receptor. Exp Cell Res. 1992 Mar;199(1):19–28. doi: 10.1016/0014-4827(92)90457-j. [DOI] [PubMed] [Google Scholar]
  14. Hopkins C. R. Intracellular routing of transferrin and transferrin receptors in epidermoid carcinoma A431 cells. Cell. 1983 Nov;35(1):321–330. doi: 10.1016/0092-8674(83)90235-0. [DOI] [PubMed] [Google Scholar]
  15. Hopkins C. R. The appearance and internalization of transferrin receptors at the margins of spreading human tumor cells. Cell. 1985 Jan;40(1):199–208. doi: 10.1016/0092-8674(85)90323-x. [DOI] [PubMed] [Google Scholar]
  16. Hopkins C. R., Trowbridge I. S. Internalization and processing of transferrin and the transferrin receptor in human carcinoma A431 cells. J Cell Biol. 1983 Aug;97(2):508–521. doi: 10.1083/jcb.97.2.508. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Huber G. K., Concepcion E. S., Graves P. N., Davies T. F. Positive regulation of human thyrotropin receptor mRNA by thyrotropin. J Clin Endocrinol Metab. 1991 Jun;72(6):1394–1396. doi: 10.1210/jcem-72-6-1394. [DOI] [PubMed] [Google Scholar]
  18. Ktistakis N. T., Thomas D., Roth M. G. Characteristics of the tyrosine recognition signal for internalization of transmembrane surface glycoproteins. J Cell Biol. 1990 Oct;111(4):1393–1407. doi: 10.1083/jcb.111.4.1393. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Legrain P., Juy D., Buttin G. Rosette-forming cell assay for detection of antibody-synthesizing hybridomas. Methods Enzymol. 1983;92:175–182. doi: 10.1016/0076-6879(83)92017-7. [DOI] [PubMed] [Google Scholar]
  20. Lin C. T., Mukai K., Lee C. Y. Studies of hCG binding and endocytosis in rat ovary by ultrastructural immunocytochemistry. Cell Tissue Res. 1982;224(3):647–653. doi: 10.1007/BF00213759. [DOI] [PubMed] [Google Scholar]
  21. Loosfelt H., Misrahi M., Atger M., Salesse R., Vu Hai-Luu Thi M. T., Jolivet A., Guiochon-Mantel A., Sar S., Jallal B., Garnier J. Cloning and sequencing of porcine LH-hCG receptor cDNA: variants lacking transmembrane domain. Science. 1989 Aug 4;245(4917):525–528. doi: 10.1126/science.2502844. [DOI] [PubMed] [Google Scholar]
  22. Loosfelt H., Pichon C., Jolivet A., Misrahi M., Caillou B., Jamous M., Vannier B., Milgrom E. Two-subunit structure of the human thyrotropin receptor. Proc Natl Acad Sci U S A. 1992 May 1;89(9):3765–3769. doi: 10.1073/pnas.89.9.3765. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Louvard D., Reggio H., Warren G. Antibodies to the Golgi complex and the rough endoplasmic reticulum. J Cell Biol. 1982 Jan;92(1):92–107. doi: 10.1083/jcb.92.1.92. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Luborsky J. L., Behrman H. R. Localization of LH receptors on luteal cells with a ferritin--LH conjugate. Mol Cell Endocrinol. 1979 Aug;15(2):61–78. doi: 10.1016/0303-7207(79)90008-x. [DOI] [PubMed] [Google Scholar]
  25. Mather J. P., Saez J. M., Haour F. Primary cultures of Leydig cells from rat, mouse and pig: advantages of porcine cells for the study of gonadotropin regulation of Leydig cell function. Steroids. 1981 Jul;38(1):35–44. doi: 10.1016/0039-128x(81)90019-2. [DOI] [PubMed] [Google Scholar]
  26. McFarland K. C., Sprengel R., Phillips H. S., Köhler M., Rosemblit N., Nikolics K., Segaloff D. L., Seeburg P. H. Lutropin-choriogonadotropin receptor: an unusual member of the G protein-coupled receptor family. Science. 1989 Aug 4;245(4917):494–499. doi: 10.1126/science.2502842. [DOI] [PubMed] [Google Scholar]
  27. Mostov K. E., de Bruyn Kops A., Deitcher D. L. Deletion of the cytoplasmic domain of the polymeric immunoglobulin receptor prevents basolateral localization and endocytosis. Cell. 1986 Nov 7;47(3):359–364. doi: 10.1016/0092-8674(86)90592-1. [DOI] [PubMed] [Google Scholar]
  28. Moyle W. R., Bernard M. P., Myers R. V., Marko O. M., Strader C. D. Leutropin/beta-adrenergic receptor chimeras bind choriogonadotropin and adrenergic ligands but are not expressed at the cell surface. J Biol Chem. 1991 Jun 15;266(17):10807–10812. [PubMed] [Google Scholar]
  29. Ohkuma S., Moriyama Y., Takano T. Identification and characterization of a proton pump on lysosomes by fluorescein-isothiocyanate-dextran fluorescence. Proc Natl Acad Sci U S A. 1982 May;79(9):2758–2762. doi: 10.1073/pnas.79.9.2758. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Payne G. S., Baker D., van Tuinen E., Schekman R. Protein transport to the vacuole and receptor-mediated endocytosis by clathrin heavy chain-deficient yeast. J Cell Biol. 1988 May;106(5):1453–1461. doi: 10.1083/jcb.106.5.1453. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Pearse B. M. Receptors compete for adaptors found in plasma membrane coated pits. EMBO J. 1988 Nov;7(11):3331–3336. doi: 10.1002/j.1460-2075.1988.tb03204.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Raposo G., Dunia I., Delavier-Klutchko C., Kaveri S., Strosberg A. D., Benedetti E. L. Internalization of beta-adrenergic receptor in A431 cells involves non-coated vesicles. Eur J Cell Biol. 1989 Dec;50(2):340–352. [PubMed] [Google Scholar]
  33. Raposo G., Dunia I., Marullo S., André C., Guillet J. G., Strosberg A. D., Benedetti E. L., Hoebeke J. Redistribution of muscarinic acetylcholine receptors on human fibroblasts induced by regulatory ligands. Biol Cell. 1987;60(2):117–123. doi: 10.1111/j.1768-322x.1987.tb00551.x. [DOI] [PubMed] [Google Scholar]
  34. Salesse R., Dacheux F., Genty N., Garnier J. Dual internalization pathway for lutropin and choriogonadotropin in porcine Leydig cells in primary culture. Biol Cell. 1989;66(3):297–306. [PubMed] [Google Scholar]
  35. Southern P. J., Berg P. Transformation of mammalian cells to antibiotic resistance with a bacterial gene under control of the SV40 early region promoter. J Mol Appl Genet. 1982;1(4):327–341. [PubMed] [Google Scholar]
  36. Stein B. S., Bensch K. G., Sussman H. H. Complete inhibition of transferrin recycling by monensin in K562 cells. J Biol Chem. 1984 Dec 10;259(23):14762–14772. [PubMed] [Google Scholar]
  37. Strosberg A. D. Structure/function relationship of proteins belonging to the family of receptors coupled to GTP-binding proteins. Eur J Biochem. 1991 Feb 26;196(1):1–10. doi: 10.1111/j.1432-1033.1991.tb15778.x. [DOI] [PubMed] [Google Scholar]
  38. Trowbridge I. S. Endocytosis and signals for internalization. Curr Opin Cell Biol. 1991 Aug;3(4):634–641. doi: 10.1016/0955-0674(91)90034-v. [DOI] [PubMed] [Google Scholar]
  39. Vigers G. P., Crowther R. A., Pearse B. M. Location of the 100 kd-50 kd accessory proteins in clathrin coats. EMBO J. 1986 Sep;5(9):2079–2085. doi: 10.1002/j.1460-2075.1986.tb04469.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  40. Vuhai-Luuthi M. T., Jolivet A., Jallal B., Salesse R., Bidart J. M., Houllier A., Guiochon-Mantel A., Garnier J., Milgrom E. Monoclonal antibodies against luteinizing hormone receptor. Immunochemical characterization of the receptor. Endocrinology. 1990 Nov;127(5):2090–2098. doi: 10.1210/endo-127-5-2090. [DOI] [PubMed] [Google Scholar]
  41. Wang H., Segaloff D. L., Ascoli M. Lutropin/choriogonadotropin down-regulates its receptor by both receptor-mediated endocytosis and a cAMP-dependent reduction in receptor mRNA. J Biol Chem. 1991 Jan 15;266(2):780–785. [PubMed] [Google Scholar]
  42. Whittaker J., Hammond V. A., Taylor R., Alberti K. G. Effects of monensin on insulin interactions with isolated hepatocytes. Evidence for inhibition of receptor recycling and insulin degradation. Biochem J. 1986 Mar 1;234(2):463–468. doi: 10.1042/bj2340463. [DOI] [PMC free article] [PubMed] [Google Scholar]
  43. Wiley H. S., Herbst J. J., Walsh B. J., Lauffenburger D. A., Rosenfeld M. G., Gill G. N. The role of tyrosine kinase activity in endocytosis, compartmentation, and down-regulation of the epidermal growth factor receptor. J Biol Chem. 1991 Jun 15;266(17):11083–11094. [PubMed] [Google Scholar]
  44. Xie Y. B., Wang H., Segaloff D. L. Extracellular domain of lutropin/choriogonadotropin receptor expressed in transfected cells binds choriogonadotropin with high affinity. J Biol Chem. 1990 Dec 15;265(35):21411–21414. [PubMed] [Google Scholar]