Sequence and expression analysis of potential nonstructural proteins of 4.9, 4.8, 12.7, and 9.5 kDa encoded between the apike and membrane protein genes of the bovine coronavirus (original) (raw)
Abstract
The nucleotide sequence between the spike and membrane protein genes in the bovine coronavirus (BCV) genome was determined by sequencing cDNA clones of the genome, and open reading frames potentially encoding proteins of 4.9, 4.8, 12.7, and 9.5 kDa, in that order, were identified. The 4.9- and 4.8-kDa proteins appear to be vestiges of an 11-kDa protein for which a single nucleotide deletion event in the central part of the gene gave rise to a stop codon. The consensus CYAAAC sequence precedes the 4.9-, 12.7-, and 9.5-kDa ORFs and predicts that transcription will start from each of these sites. Northern analyses using sequence-specific probes and oligo(dT)-selected RNA demonstrated that the predicted transcripts are made, and that these correspond to mRNAs 4, 5, and 5-1. BCV mRNA 4 appears to be a counterpart to mouse hepatitis virus (MHV) mRNA 4 which, in the MHV JHM strain, encodes the putative 15.2-kDa nonstructural protein. BCV mRNAs 5 and 5-1 appear to be used for the synthesis of the 12.7- and 9.5-kDa proteins, respectively, which demonstrates a pattern of expression strikingly different from that utilized by MHV. MHV makes its homologs of the 12.7- and 9.5-kDa proteins from the single mRNA 5. In vitro translation analyses demonstrated that the BCV 9.5-kDa protein, unlike its MHV counterpart, is poorly made from downstream initiation of translation. Thus, from a comparison between BCV and MHV we find evolutionary evidence for the importance of the CYAAAC sequence in regulating coronavirus transcription.
References
- Abraham S., Kienzle T.E., Lapps W., Brian D.A. Deduced sequence of the bovine coronavirus spike protein and identification of the internal proteolytic cleavage site. Virology. 1990;176:296–301. doi: 10.1016/0042-6822(90)90257-R. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Anderson D.J., Blobel G. Immunoprecipitation of proteins from cell-free translations. In: Fleischer S., Fleischer B., editors. Vol. 96. Academic Press; Orlando, FL: 1983. pp. 111–120. (Methods in Enzymology). [DOI] [PubMed] [Google Scholar]
- Armstrong J., Smeekens S., Rottier P. Sequence of the nucleocapsid gene from murine coronavirus MHV-A59. Nucl. Acids Res. 1983;11:833–891. doi: 10.1093/nar/11.3.883. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Boursnell M.E.G., Binns M.M., Brown T.D.K. Sequencing of coronavirus IBV genomic RNA: Three open reading frames in the 5′ “unique” region of mRNA D. J. Gen. Virol. 1985;66:2253–2258. doi: 10.1099/0022-1317-66-10-2253. [DOI] [PubMed] [Google Scholar]
- Boursnell M.E.G., Brown T.D.K. Sequencing of coronavirus IBV genomic RNA: A 195-base open reading frame encoded by mRNA B. Gene. 1984;29:87–92. doi: 10.1016/0378-1119(84)90169-0. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Boursnell M.E.G., Brown T.D.K., Foulds I.J., Green P.F., Tomley F.M., Binns M.M. Completion of the sequence of the genome of the coronavirus avian infectious bronchitis virus. J. Gen. Virol. 1987;66:57–77. doi: 10.1099/0022-1317-68-1-57. [DOI] [PubMed] [Google Scholar]
- Budzilowicz C.J., Weiss S.R. In vitro synthesis of two polypeptides from a nonstructural gene of coronavirus mouse hepatitis virus strain A59. Virology. 1987;157:509–515. doi: 10.1016/0042-6822(87)90293-5. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Cox G.J., Parker M.D., Babiuk L.A. The sequence of cDNA of bovine coronavirus 32K nonstructural gene. Nucl. Acids Res. 1989;17:5847. doi: 10.1093/nar/17.14.5847. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Dennis D.E., Brian D.A. RNA-dependent RNA polymerase activity in coronavirus-infected cells. J. Virol. 1982;42:153–164. doi: 10.1128/jvi.42.1.153-164.1982. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Ebner D., Raabe T., Siddell S.G. Identification of the coronavirus MHV-JHM mRNA 4 product. J. Gen. Virol. 1988;69:1041–1050. doi: 10.1099/0022-1317-69-5-1041. [DOI] [PubMed] [Google Scholar]
- Giulian G.G., Shanahan M.F., Graham J.M., Moss R.L. Vol. 44. 1985. Resolution of low molecular weight polypeptides in a nonurea sodium dodecyl sulfate slab polyacrylamide gel system; p. 686. (Fed. Proc.). [Google Scholar]
- Henikoff S. Unidirectional digestion with exonuclease III creates targeted breakpoints for DNA sequencing. Gene. 1984;28:351–359. doi: 10.1016/0378-1119(84)90153-7. [DOI] [PubMed] [Google Scholar]
- Kaariainen L., Virtanen I., Saraste J., Keranen S. Transport of virus membrane glycoproteins, use of temperaturesensitive mutants and organelle-specific lectins. In: Fleischer S., Fleischer B., editors. Vol. 96. Academic Press; Orlando, FL: 1983. pp. 453–465. (Methods in Enzymology). [DOI] [PubMed] [Google Scholar]
- Kapke P.A., Brian D.A. Sequence analysis of the porcine transmissible gastroenteritis coronavirus nucleocapsld protein gene. Virology. 1986;151:41–49. doi: 10.1016/0042-6822(86)90102-9. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kapke P.A., Tung F.Y.T., Brian D.A. Nucleotide sequence between the peplomer and matrix protein genes of the porcine transmissible gastroenteritis coronavirus identifies three large open reading frames. Virus Genes. 1988;2:293–294. doi: 10.1007/BF00125345. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Keck J.G., Hogue B.G., Brian D.A., Lai M.M.C. Temporal regulation of bovine coronavirus RNA synthesis. Virus Res. 1988;9:343–356. doi: 10.1016/0168-1702(88)90093-7. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Khandjian E.W. UV crosslinking of RNA to nylon membrane enhances hybridization signals. Mol. Biol. Rep. 1986;11:107–115. doi: 10.1007/BF00364822. [DOI] [PubMed] [Google Scholar]
- Kienzle T.E., Abraham S., Hogue B.G., Brian D.A. Structure and orientation of expressed bovine coronavirus hemagglutinin-esterase protein. J. Virol. 1990;64:1834–1838. doi: 10.1128/jvi.64.4.1834-1838.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
- King B., Brian D.A. Bovine coronavirus structural proteins. J. Virol. 1982;42:700–707. doi: 10.1128/jvi.42.2.700-707.1982. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kozak M. The scanning model for translation: An update. J. Cell Biol. 1989;108:229–241. doi: 10.1083/jcb.108.2.229. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Krieg P.A., Melton D.A. Functional messenger RNAs are produced by SP6 in in vitro transcription of cloned cDNAs. Nucl. Acids Res. 1984;12:7057–7070. doi: 10.1093/nar/12.18.7057. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kyte J., Doolittle R.F. A simple method for displaying the hydropathic character of a protein. J. Mol. Biol. 1982;157:105–132. doi: 10.1016/0022-2836(82)90515-0. [DOI] [PubMed] [Google Scholar]
- Lapps W., Hogue B.G., Brian D.A. Sequence analysis of the bovine coronavirus nucleocapsid and matrix protein genes. Virology. 1987;157:47–57. doi: 10.1016/0042-6822(87)90312-6. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Leibowitz J.L., Perlman S., Weinstock G., DeVries J.R., Budzilowicz C., Weissemann J.M., Weiss S.R. Derection of a murine coronavirus nonstructural protein encoded in a downstream open reading frame. Virology. 1988;164:156–164. doi: 10.1016/0042-6822(88)90631-9. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Lizardi P.M. Methods for the preparation of messenger RNA. In: Fleischer S., Fleischer B., editors. Vol. 96. Academic Press; Orlando, FL: 1983. pp. 24–38. (Methods in Enzymology). [DOI] [PubMed] [Google Scholar]
- Maniatis T., Fritsch E.F., Sambrook J. Cold Spring Harbor Laboratory; Cold Spring Harbor, NY: 1982. (Molecular Cloning: A Laboratory Manual). [Google Scholar]
- Maxam A.M., Gilbert W. Sequencing end-labeled DNA with base-specific chemical cleavages. In: Grossman L., Moldave K., editors. Vol. 65. Academic Press; Orlando, FL: 1980. pp. 499–560. (Methods in Enzymology). [DOI] [PubMed] [Google Scholar]
- Pachuk C.J., Bredenbeek P.J., Zoltick P.W., Spaan W.J.M., Weiss S.R. Molecular cloning of the gene encoding the putative polymerase of mouse hepatitis coronavirus, strain A59. Virology. 1989;171:141–148. doi: 10.1016/0042-6822(89)90520-5. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Parker M.D., Cox G.J., Deregt D., Fitzpatrick D.R., Babiuk L.A. Cloning and in vitro expression of the gene for the E3 hemagglutinin glycoprotein of bovine coronavirus. J. Gen. Virol. 1989;70:155–164. doi: 10.1099/0022-1317-70-1-155. [DOI] [PubMed] [Google Scholar]
- Pelletier J., Sonenberg N. Internal binding of eucaryotic ribosomes of poliovirus RNA: Translation in HeLa cell extracts. J. Virol. 1989;63:441–444. doi: 10.1128/jvi.63.1.441-444.1989. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Quwen C., Korn K.J. A comprehensive sequence analysis program for the IBM personal computer. Nucl. Acids Res. 1984;12:581–599. doi: 10.1093/nar/12.1part2.581. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Schmidt I., Skinner M., Siddell S. Nucleotide sequence of the gene encoding the surface projection glycoprotein of coronavirus MHV-JHM. J. Gen. Virol. 1987;68:47–56. doi: 10.1099/0022-1317-68-1-47. [DOI] [PubMed] [Google Scholar]
- Sethna P.B., Hung S.-L., Brian D.A. Vol. 86. 1989. Coronavirus subgenomic minus-strand RNAs and the potential for mRNA replicons; pp. 5626–5630. (Proc. Natl. Acad. Sci. USA). [DOI] [PMC free article] [PubMed] [Google Scholar]
- Skinner M.A., Ebner D., Sifdell S.G. Coronavirus MHV-JHM mRNA 5 has a sequence arrangement which potentially allows translation of a second, downstream open reading frame. J. Gen. Virol. 1985;66:581–592. doi: 10.1099/0022-1317-66-3-581. [DOI] [PubMed] [Google Scholar]
- Skinner M.A., Sifdell S.G. Coding sequence of coronavirus MHV-JHM mRNA 4. J. Gen. Virol. 1985;66:593–596. doi: 10.1099/0022-1317-66-3-593. [DOI] [PubMed] [Google Scholar]
- Spaan W., Cavanagh D., Horzinek M.C. Coronaviruses: Structure and genome expression. J. Gen. Virol. 1988;69:2939–2952. doi: 10.1099/0022-1317-69-12-2939. [DOI] [PubMed] [Google Scholar]
- Thomas P.S. Vol. 77. 1980. Hybridization of denatured RNA and small DNA fragments transferred to nitrocellulose; pp. 5205–5209. (Proc. Natl. Acad. Sci. USA). [DOI] [PMC free article] [PubMed] [Google Scholar]
- Von Heijne G. Signal sequences: The limits of variation. J. Mol. Biol. 1985;184:99–105. doi: 10.1016/0022-2836(85)90046-4. [DOI] [PubMed] [Google Scholar]