Juxtaposition of domains homologous to protein kinases and histidyl-tRNA synthetases in GCN2 protein suggests a mechanism for coupling GCN4 expression to amino acid availability. (original) (raw)

Proc Natl Acad Sci U S A. 1989 Jun; 86(12): 4579–4583.

Unit on Molecular Genetics of Lower Eukaryotes, National Institute of Child Health and Human Development, Bethesda, MD 20892.

Abstract

The GCN2 protein of Saccharomyces cerevisiae stimulates the expression of amino acid biosynthetic genes under conditions of amino acid starvation by derepressing GCN4, a transcriptional activator of these genes. GCN2 contains sequences homologous to the catalytic domain of protein kinases. We show here that substitution of a highly conserved lysine in the presumed ATP-binding site of this domain impairs the derepression of histidine biosynthetic genes under GCN4 control. This result supports the idea that protein kinase activity is required for GCN2 positive regulatory function. Determination of the nucleotide sequence of the entire GCN2 complementation unit, and measurement of the molecular weight of GCN2 protein expressed in vivo, indicate that GCN2 is a Mr approximately 180,000 protein and contains a Mr approximately 60,000 segment homologous to histidyl-tRNA synthetases (HisRSs) juxtaposed to the protein kinase domain. Several two-codon insertion mutations in the HisRS-related coding sequences inactivate GCN2 regulatory function. Based on these results, we propose that the GCN2 HisRS domain responds to the presence of uncharged tRNA by activating the adjacent protein kinase moiety, thus providing a means of coupling GCN2-mediated derepression of GCN4 expression to the availability of amino acids.

Full text

Full text is available as a scanned copy of the original print version. Get a printable copy (PDF file) of the complete article (1.2M), or click on a page image below to browse page by page. Links to PubMed are also available for Selected References.

Images in this article

Click on the image to see a larger version.

Selected References

These references are in PubMed. This may not be the complete list of references from this article.


Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences