Downregulation of the antigen presenting cell function(s) of pulmonary dendritic cells in vivo by resident alveolar macrophages (original) (raw)
Abstract
Class II major histocompatibility complex (Ia)-bearing dendritic cells (DC) from airway epithelium and lung parenchyma express low-moderate antigen presenting cell (APC) activity when freshly isolated. However, this function is markedly upregulated during overnight culture in a manner analogous to epidermal Langerhans cells. The in vitro "maturation" process is inhibited by coculture with pulmonary alveolar macrophages (PAM) across a semipermeable membrane, and the degree of inhibition achieved can be markedly increased by the presence of tumor necrosis factor alpha. In addition, PAM-mediated suppression of DC function is abrogated via inhibition of the nitric oxide synthetase pathway. Functional maturation of the DC is accompanied by increased expression of surface Ia, which is also inhibited in the presence of PAM. Prior elimination of PAM from DC donors via intratracheal administration of the cytotoxic drug dichloromethylene diphosphonate in liposomes, 24-72 h before lung DC preparation, achieves a comparable upregulation of APC activity, suggesting that (consistent with the in vitro data) the resident PAM population actively suppresses the APC function of lung DC in situ. In support of the feasibility of such a regulatory mechanism, electron microscopic examination of normal lung fixed by intravascular perfusion in the inflated state (which optimally preserves PAM in situ), revealed that the majority are preferentially localized in recesses at the alveolar septal junctions. In this position, the PAM are in intimate association with the alveolar epithelial surface, and are effectively separated by as little as 0.2 microns from underlying interstitial spaces which contain the peripheral lung DC population. A similar juxtaposition of airway intraepithelial DC is demonstrated with underlying submucosal tissue macrophages, where the separation between the two cell populations is effectively the width of the basal lamina.
Full Text
The Full Text of this article is available as a PDF (1.8 MB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Bowers W. E., Ruhoff M. S., Goodell E. M. Conditioned medium from activated rat macrophages and the recombinant factors, IL-1 beta and GM-CSF, enhance the accessory activity of dendritic cells. Immunobiology. 1990 Jun;180(4-5):362–384. doi: 10.1016/s0171-2985(11)80299-8. [DOI] [PubMed] [Google Scholar]
- Brain J. D., Gehr P., Kavet R. I. Airway macrophages. The importance of the fixation method. Am Rev Respir Dis. 1984 May;129(5):823–826. doi: 10.1164/arrd.1984.129.5.823. [DOI] [PubMed] [Google Scholar]
- Cumberbatch M., Kimber I. Dermal tumour necrosis factor-alpha induces dendritic cell migration to draining lymph nodes, and possibly provides one stimulus for Langerhans' cell migration. Immunology. 1992 Feb;75(2):257–263. [PMC free article] [PubMed] [Google Scholar]
- Dijkstra C. D., Döpp E. A., Joling P., Kraal G. The heterogeneity of mononuclear phagocytes in lymphoid organs: distinct macrophage subpopulations in the rat recognized by monoclonal antibodies ED1, ED2 and ED3. Immunology. 1985 Mar;54(3):589–599. [PMC free article] [PubMed] [Google Scholar]
- Ding A. H., Nathan C. F., Stuehr D. J. Release of reactive nitrogen intermediates and reactive oxygen intermediates from mouse peritoneal macrophages. Comparison of activating cytokines and evidence for independent production. J Immunol. 1988 Oct 1;141(7):2407–2412. [PubMed] [Google Scholar]
- Eckels D. D. Alloreactivity: allogeneic presentation of endogenous peptide or direct recognition of MHC polymorphism? A review. Tissue Antigens. 1990 Feb;35(2):49–55. doi: 10.1111/j.1399-0039.1990.tb01755.x. [DOI] [PubMed] [Google Scholar]
- Farrell H. E., Holt P. G., Shellam G. R. Regulation of natural killer cell activity and interferon production in the rat lung following aerosol challenge. Int Arch Allergy Appl Immunol. 1985;78(3):318–325. doi: 10.1159/000233904. [DOI] [PubMed] [Google Scholar]
- Heufler C., Koch F., Schuler G. Granulocyte/macrophage colony-stimulating factor and interleukin 1 mediate the maturation of murine epidermal Langerhans cells into potent immunostimulatory dendritic cells. J Exp Med. 1988 Feb 1;167(2):700–705. doi: 10.1084/jem.167.2.700. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Holt P. G., Degebrodt A., O'Leary C., Krska K., Plozza T. T cell activation by antigen-presenting cells from lung tissue digests: suppression by endogenous macrophages. Clin Exp Immunol. 1985 Dec;62(3):586–593. [PMC free article] [PubMed] [Google Scholar]
- Holt P. G. Down-regulation of immune responses in the lower respiratory tract: the role of alveolar macrophages. Clin Exp Immunol. 1986 Feb;63(2):261–270. [PMC free article] [PubMed] [Google Scholar]
- Holt P. G., McMenamin C. Defence against allergic sensitization in the healthy lung: the role of inhalation tolerance. Clin Exp Allergy. 1989 May;19(3):255–262. doi: 10.1111/j.1365-2222.1989.tb02380.x. [DOI] [PubMed] [Google Scholar]
- Holt P. G., Oliver J., McMenamin C., Schon-Hegrad M. A. Studies on the surface phenotype and functions of dendritic cells in parenchymal lung tissue of the rat. Immunology. 1992 Apr;75(4):582–587. [PMC free article] [PubMed] [Google Scholar]
- Holt P. G., Schon-Hegrad M. A., McMenamin P. G. Dendritic cells in the respiratory tract. Int Rev Immunol. 1990;6(2-3):139–149. doi: 10.3109/08830189009056625. [DOI] [PubMed] [Google Scholar]
- Holt P. G., Schon-Hegrad M. A., Oliver J., Holt B. J., McMenamin P. G. A contiguous network of dendritic antigen-presenting cells within the respiratory epithelium. Int Arch Allergy Appl Immunol. 1990;91(2):155–159. doi: 10.1159/000235107. [DOI] [PubMed] [Google Scholar]
- Holt P. G., Schon-Hegrad M. A., Oliver J. MHC class II antigen-bearing dendritic cells in pulmonary tissues of the rat. Regulation of antigen presentation activity by endogenous macrophage populations. J Exp Med. 1988 Feb 1;167(2):262–274. doi: 10.1084/jem.167.2.262. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Holt P. G., Schon-Hegrad M. A., Phillips M. J., McMenamin P. G. Ia-positive dendritic cells form a tightly meshed network within the human airway epithelium. Clin Exp Allergy. 1989 Nov;19(6):597–601. doi: 10.1111/j.1365-2222.1989.tb02752.x. [DOI] [PubMed] [Google Scholar]
- Inaba K., Schuler G., Witmer M. D., Valinksy J., Atassi B., Steinman R. M. Immunologic properties of purified epidermal Langerhans cells. Distinct requirements for stimulation of unprimed and sensitized T lymphocytes. J Exp Med. 1986 Aug 1;164(2):605–613. doi: 10.1084/jem.164.2.605. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Janeway C. A., Jr The immune system evolved to discriminate infectious nonself from noninfectious self. Immunol Today. 1992 Jan;13(1):11–16. doi: 10.1016/0167-5699(92)90198-G. [DOI] [PubMed] [Google Scholar]
- Kawabe T., Isobe K. I., Hasegawa Y., Nakashima I., Shimokata K. Immunosuppressive activity induced by nitric oxide in culture supernatant of activated rat alveolar macrophages. Immunology. 1992 May;76(1):72–78. [PMC free article] [PubMed] [Google Scholar]
- Kips J. C., Tavernier J., Pauwels R. A. Tumor necrosis factor causes bronchial hyperresponsiveness in rats. Am Rev Respir Dis. 1992 Feb;145(2 Pt 1):332–336. doi: 10.1164/ajrccm/145.2_Pt_1.332. [DOI] [PubMed] [Google Scholar]
- Koch F., Heufler C., Kämpgen E., Schneeweiss D., Böck G., Schuler G. Tumor necrosis factor alpha maintains the viability of murine epidermal Langerhans cells in culture, but in contrast to granulocyte/macrophage colony-stimulating factor, without inducing their functional maturation. J Exp Med. 1990 Jan 1;171(1):159–171. doi: 10.1084/jem.171.1.159. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kradin R. L., McCarthy K. M., Xia W. J., Lazarus D., Schneeberger E. E. Accessory cells of the lung. I. Interferon-gamma increases Ia+ dendritic cells in the lung without augmenting their accessory activities. Am J Respir Cell Mol Biol. 1991 Mar;4(3):210–218. doi: 10.1165/ajrcmb/4.3.210. [DOI] [PubMed] [Google Scholar]
- MacPherson G. G. Properties of lymph-borne (veiled) dendritic cells in culture. I. Modulation of phenotype, survival and function: partial dependence on GM-CSF. Immunology. 1989 Sep;68(1):102–107. [PMC free article] [PubMed] [Google Scholar]
- Martinet Y., Yamauchi K., Crystal R. G. Differential expression of the tumor necrosis factor/cachectin gene by blood and lung mononuclear phagocytes. Am Rev Respir Dis. 1988 Sep;138(3):659–665. doi: 10.1164/ajrccm/138.3.659. [DOI] [PubMed] [Google Scholar]
- Mason D. W., Arthur R. P., Dallman M. J., Green J. R., Spickett G. P., Thomas M. L. Functions of rat T-lymphocyte subsets isolated by means of monoclonal antibodies. Immunol Rev. 1983;74:57–82. doi: 10.1111/j.1600-065x.1983.tb01084.x. [DOI] [PubMed] [Google Scholar]
- Mason D. W., Pugh C. W., Webb M. The rat mixed lymphocyte reaction: roles of a dendritic cell in intestinal lymph and T-cell subsets defined by monoclonal antibodies. Immunology. 1981 Sep;44(1):75–87. [PMC free article] [PubMed] [Google Scholar]
- Mills C. D. Molecular basis of "suppressor" macrophages. Arginine metabolism via the nitric oxide synthetase pathway. J Immunol. 1991 Apr 15;146(8):2719–2723. [PubMed] [Google Scholar]
- Nicod L. P., Lipscomb M. F., Toews G. B., Weissler J. C. Separation of potent and poorly functional human lung accessory cells based on autofluorescence. J Leukoc Biol. 1989 May;45(5):458–465. doi: 10.1002/jlb.45.5.458. [DOI] [PubMed] [Google Scholar]
- Nicod L. P., Lipscomb M. F., Weissler J. C., Lyons C. R., Albertson J., Toews G. B. Mononuclear cells in human lung parenchyma. Characterization of a potent accessory cell not obtained by bronchoalveolar lavage. Am Rev Respir Dis. 1987 Oct;136(4):818–823. doi: 10.1164/ajrccm/136.4.818. [DOI] [PubMed] [Google Scholar]
- Parra S. C., Burnette R., Price H. P., Takaro T. Zonal distribution of alveolar macrophages, type II pneumonocytes, and alveolar septal connective tissue gaps in adult human lungs. Am Rev Respir Dis. 1986 May;133(5):908–912. [PubMed] [Google Scholar]
- Pollard A. M., Lipscomb M. F. Characterization of murine lung dendritic cells: similarities to Langerhans cells and thymic dendritic cells. J Exp Med. 1990 Jul 1;172(1):159–167. doi: 10.1084/jem.172.1.159. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Puré E., Inaba K., Crowley M. T., Tardelli L., Witmer-Pack M. D., Ruberti G., Fathman G., Steinman R. M. Antigen processing by epidermal Langerhans cells correlates with the level of biosynthesis of major histocompatibility complex class II molecules and expression of invariant chain. J Exp Med. 1990 Nov 1;172(5):1459–1469. doi: 10.1084/jem.172.5.1459. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Rochester C. L., Goodell E. M., Stoltenborg J. K., Bowers W. E. Dendritic cells from rat lung are potent accessory cells. Am Rev Respir Dis. 1988 Jul;138(1):121–128. doi: 10.1164/ajrccm/138.1.121. [DOI] [PubMed] [Google Scholar]
- Schon-Hegrad M. A., Oliver J., McMenamin P. G., Holt P. G. Studies on the density, distribution, and surface phenotype of intraepithelial class II major histocompatibility complex antigen (Ia)-bearing dendritic cells (DC) in the conducting airways. J Exp Med. 1991 Jun 1;173(6):1345–1356. doi: 10.1084/jem.173.6.1345. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Sertl K., Takemura T., Tschachler E., Ferrans V. J., Kaliner M. A., Shevach E. M. Dendritic cells with antigen-presenting capability reside in airway epithelium, lung parenchyma, and visceral pleura. J Exp Med. 1986 Feb 1;163(2):436–451. doi: 10.1084/jem.163.2.436. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Smith S. M., Lee D. K., Lacy J., Coleman D. L. Rat tracheal epithelial cells produce granulocyte/macrophage colony-stimulating factor. Am J Respir Cell Mol Biol. 1990 Jan;2(1):59–68. doi: 10.1165/ajrcmb/2.1.59. [DOI] [PubMed] [Google Scholar]
- Steinman R. M., Nussenzweig M. C. Dendritic cells: features and functions. Immunol Rev. 1980;53:127–147. doi: 10.1111/j.1600-065x.1980.tb01042.x. [DOI] [PubMed] [Google Scholar]
- Steinman R. M. The dendritic cell system and its role in immunogenicity. Annu Rev Immunol. 1991;9:271–296. doi: 10.1146/annurev.iy.09.040191.001415. [DOI] [PubMed] [Google Scholar]
- Stewart G. A., Holt P. G. Immunogenicity and tolerogenicity of a major house dust mite allergen, Der p I from Dermatophagoides pteronyssinus, in mice and rats. Int Arch Allergy Appl Immunol. 1987;83(1):44–51. doi: 10.1159/000234329. [DOI] [PubMed] [Google Scholar]
- Thepen T., McMenamin C., Oliver J., Kraal G., Holt P. G. Regulation of immune response to inhaled antigen by alveolar macrophages: differential effects of in vivo alveolar macrophage elimination on the induction of tolerance vs. immunity. Eur J Immunol. 1991 Nov;21(11):2845–2850. doi: 10.1002/eji.1830211128. [DOI] [PubMed] [Google Scholar]
- Thepen T., Van Rooijen N., Kraal G. Alveolar macrophage elimination in vivo is associated with an increase in pulmonary immune response in mice. J Exp Med. 1989 Aug 1;170(2):499–509. doi: 10.1084/jem.170.2.499. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Tsuchiya Y., Igarashi M., Suzuki R., Kumagai K. Production of colony-stimulating factor by tumor cells and the factor-mediated induction of suppressor cells. J Immunol. 1988 Jul 15;141(2):699–708. [PubMed] [Google Scholar]
- Witmer-Pack M. D., Valinsky J., Olivier W., Steinman R. M. Quantitation of surface antigens on cultured murine epidermal Langerhans cells: rapid and selective increase in the level of surface MHC products. J Invest Dermatol. 1988 Mar;90(3):387–394. doi: 10.1111/1523-1747.ep12456460. [DOI] [PubMed] [Google Scholar]