tf.compat.v1.glorot_normal_initializer  |  TensorFlow v2.16.1 (original) (raw)

The Glorot normal initializer, also called Xavier normal initializer.

Inherits From: variance_scaling_initializer

View aliases

Compat aliases for migration

SeeMigration guide for more details.

tf.compat.v1.initializers.glorot_normal

tf.compat.v1.glorot_normal_initializer(
    seed=None,
    dtype=tf.dtypes.float32
)

It draws samples from a truncated normal distribution centered on 0 with standard deviation (after truncation) given bystddev = sqrt(2 / (fan_in + fan_out)) where fan_in is the number of input units in the weight tensor and fan_out is the number of output units in the weight tensor.

Args
seed A Python integer. Used to create random seeds. Seetf.compat.v1.set_random_seed for behavior.
dtype Default data type, used if no dtype argument is provided when calling the initializer. Only floating point types are supported.
References
Glorot et al., 2010(pdf)

Methods

from_config

View source

@classmethod from_config( config )

Instantiates an initializer from a configuration dictionary.

Example:

initializer = RandomUniform(-1, 1)
config = initializer.get_config()
initializer = RandomUniform.from_config(config)
Args
config A Python dictionary. It will typically be the output ofget_config.
Returns
An Initializer instance.

get_config

View source

get_config()

Returns the configuration of the initializer as a JSON-serializable dict.

Returns
A JSON-serializable Python dict.

__call__

View source

__call__(
    shape, dtype=None, partition_info=None
)

Returns a tensor object initialized as specified by the initializer.

Args
shape Shape of the tensor.
dtype Optional dtype of the tensor. If not provided use the initializer dtype.
partition_info Optional information about the possible partitioning of a tensor.