tf.compat.v1.ones_initializer  |  TensorFlow v2.16.1 (original) (raw)

tf.compat.v1.ones_initializer

Stay organized with collections Save and categorize content based on your preferences.

Initializer that generates tensors initialized to 1.

View aliases

Compat aliases for migration

SeeMigration guide for more details.

tf.compat.v1.initializers.ones

tf.compat.v1.ones_initializer(
    dtype=tf.dtypes.float32
)

Migrate to TF2

This API is compatible with TF2 behavior and tf.function, and can be migrated immediately with tf.keras.initializers.ones.

Before:

>>> initializer = tf.compat.v1.keras.initializers.ones()
>>> initializer((1, 1))
<tf.Tensor: shape=(1, 1), dtype=float32, numpy=array([[1.]], dtype=float32)>

After:

>>> initializer = tf.keras.initializers.ones()
>>> initializer((1, 1))
<tf.Tensor: shape=(1, 1), dtype=float32, numpy=array([[1.]], dtype=float32)>

Description

Used in the notebooks

Used in the guide
Use TF1.x models in TF2 workflows

Methods

from_config

View source

@classmethod from_config( config )

Instantiates an initializer from a configuration dictionary.

Example:

initializer = RandomUniform(-1, 1)
config = initializer.get_config()
initializer = RandomUniform.from_config(config)
Args
config A Python dictionary. It will typically be the output ofget_config.
Returns
An Initializer instance.

get_config

View source

get_config()

Returns the configuration of the initializer as a JSON-serializable dict.

Returns
A JSON-serializable Python dict.

__call__

View source

__call__(
    shape, dtype=None, partition_info=None
)

Returns a tensor object initialized as specified by the initializer.

Args
shape Shape of the tensor.
dtype Optional dtype of the tensor. If not provided use the initializer dtype.
partition_info Optional information about the possible partitioning of a tensor.