tf.compat.v1.ones_initializer | TensorFlow v2.16.1 (original) (raw)
tf.compat.v1.ones_initializer
Stay organized with collections Save and categorize content based on your preferences.
Initializer that generates tensors initialized to 1.
View aliases
Compat aliases for migration
SeeMigration guide for more details.
tf.compat.v1.initializers.ones
tf.compat.v1.ones_initializer(
dtype=tf.dtypes.float32
)
Migrate to TF2
This API is compatible with TF2 behavior and tf.function, and can be migrated immediately with tf.keras.initializers.ones.
Before:
>>> initializer = tf.compat.v1.keras.initializers.ones()
>>> initializer((1, 1))
<tf.Tensor: shape=(1, 1), dtype=float32, numpy=array([[1.]], dtype=float32)>
After:
>>> initializer = tf.keras.initializers.ones()
>>> initializer((1, 1))
<tf.Tensor: shape=(1, 1), dtype=float32, numpy=array([[1.]], dtype=float32)>
Description
Used in the notebooks
Used in the guide |
---|
Use TF1.x models in TF2 workflows |
Methods
from_config
@classmethod
from_config( config )
Instantiates an initializer from a configuration dictionary.
Example:
initializer = RandomUniform(-1, 1)
config = initializer.get_config()
initializer = RandomUniform.from_config(config)
Args | |
---|---|
config | A Python dictionary. It will typically be the output ofget_config. |
Returns |
---|
An Initializer instance. |
get_config
get_config()
Returns the configuration of the initializer as a JSON-serializable dict.
Returns |
---|
A JSON-serializable Python dict. |
__call__
__call__(
shape, dtype=None, partition_info=None
)
Returns a tensor object initialized as specified by the initializer.
Args | |
---|---|
shape | Shape of the tensor. |
dtype | Optional dtype of the tensor. If not provided use the initializer dtype. |
partition_info | Optional information about the possible partitioning of a tensor. |